精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若是函数的极值点,求曲线在点处的切线方程;

(2)若函数上为单调增函数,求的取值范围;

(3)设为正实数,且,求证:

【答案】(1) ;(2);(3)证明见解析.

【解析】试题分析:(1)求出导数,由题意可得代入可得可得切线的斜率和切点,进而得到切线的方程;(2)由函数上为增函数,可得恒成立,既有,当 求得右边函数的最小值即可得到范围;(3)运用分析法证明,要证只需证,即证求出导数判断单调性,运用单调递增,即可得证.

试题解析:(1

由题意知,代入得,经检验,符合题意.

从而切线斜率 ,切点为

切线方程为

2 因为上为单调增函数,所以上恒成立. 上恒成立,当时,由,设所以当且仅当 有最小值所以的取值范围是

3)要证,只需证

即证只需证

由(2上是单调函数,又

所以成立所以.

【方法点晴】本题主要考查利用导数求曲线切线以及利用导数研究函数的单调性、证明不等式,属于难题.求曲线切线方程的一般步骤是:(1)求出处的导数,即在点 出的切线斜率(当曲线处的切线与轴平行时,在 处导数不存在,切线方程为);(2)由点斜式求得切线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义在上且以3为周期的奇函数,当时, ,则函数在区间上的零点个数是( )

A. 3 B. 5 C. 7 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若存在x1 , x2 , 当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足:f(﹣x)+f(x)=ex+ex , 则称f(x)为“e函数”.
(1)试判断f(x)=ex+x3是否为“e函数”,并说明理由;
(2)若f(x)为“e函数”且
(ⅰ)求证:f(x)的零点在 上;
(ⅱ)求证:对任意a>0,存在λ>0,使f(x)<0在(0,λa)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆心为的圆上的动点,点,线段的垂直平分线交于点.

(1)求动点的轨迹的方程;

(2)矩形的边所在直线与曲线均相切,设矩形的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,|φ|< )的图象如图所示,为了得到g(x)=sin(2x+ )的图象,则只需将f(x)的图象(

A.向右平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向左平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|-1<x<1},B={x|x<a}.

(1)若AB=,求a的取值范围;

(2)若AB={x|x<1},求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设幂函数f(x)=(a﹣1)xk(a∈R,k∈Q)的图象过点
(1)求k,a的值;
(2)若函数h(x)=﹣f(x)+2b +1﹣b在[0,2]上的最大值为3,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在原点,离心率为 ,右焦点到直线x+y+ =0的距离为2.
(1)求椭圆E的方程;
(2)椭圆下顶点为A,直线y=kx+m(k≠0)与椭圆相交于不同的两点M、N,当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

同步练习册答案