精英家教网 > 高中数学 > 题目详情

【题目】全国大学生机器人大赛是由共青团中央,全国学联,深圳市人民政府联合主办的赛事,是中国最具影响力的机器人项目,是全球独创的机器人竞技平台.全国大学生机器人大赛比拼的是参赛选手们的能力,坚持和态度,展现的是个人实力以及整个团队的力量.2015赛季共吸引全国240余支机器人战队踊跃报名,这些参赛战队来自全国六大赛区,150余所高等院校,其中不乏北京大学,清华大学,上海交大,中国科大,西安交大等众多国内顶尖高校,经过严格筛选,最终由111支机器人战队参与到2015年全国大学生机器人大赛的激烈角逐之中,某大学共有“机器人”兴趣团队1000个,大一、大二、大三、大四分别有100,200,300,400个,为挑选优秀团队,现用分层抽样的方法,从以上团队中抽取20个团队.

(1)应从大三抽取多少个团队?

(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试(共150分),甲、乙两组的分数如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

从甲、乙两组中选一组强化训练,备战机器人大赛.从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?

【答案】(1)6个团队(2)见解析

【解析】

(1)根据题意,先根据各年级团队的比例计算抽样比,再由抽样比求得从大三抽取多少个团队.

(2)先计算两组数据的平均数和方差,结合平均数描述平均水平、方差描述波动程度、高分比例描述获胜概率,分析选择甲组或乙组的理由.

解:(1)由题知,大三团队个数占总团队数的

则用分层抽样的方法,应从大三中抽取个团队.

2)甲组数据的平均数,乙组数据的平均数

甲组数据的方差,乙组数据的方差

选甲队理由:甲、乙两队平均数相差不大,且,甲组成绩波动小.

选乙队理由: ,且乙队中不低于140分的团队多,在竞技比赛中,高分团队获胜的概率大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).

(1)当甲城市投资50万元时,求此时公司总收益;

(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA=2.

(1)求证:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值为 ,求斜三棱柱ABC﹣A1B1C1的侧棱AA1的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a是常数),).

1,并判断是否存在实数a使成等差数列.若存在,求出的通项公式;若不存在,说明理由;

2)设),为数列的前n项和,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品按质量分10个档次,生产最低档次的利润是8/件;每提高一个档次,利润每件增加2元,每提高一个档次,产量减少3件,在相同时间内,最低档次的产品可生产60件.问:在相同时间内,生产第几档次的产品可获得最大利润?(最低档次为第一档次)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是边长为2的正方形, 分别为线段 的中点.

(1)求证: ||平面

(2)四棱柱的外接球的表面积为,求异面直线所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ADEF与梯形ABCD所在的平面互相垂直,ADCD,ABCD,AB=AD=CD=2,点M是线段EC的中点.

(1)求证:BM平面ADEF;

(2)求证:平面BDE平面BEC;

(3)求平面BDM与平面ABF所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在钝角△ABC中,∠A为钝角,令,若.现给出下面结论:

①当时,点D是△ABC的重心;

②记△ABD,△ACD的面积分别为,当时,

③若点D在△ABC内部(不含边界),则的取值范围是

④若点D在线段BC上(不在端点),则

⑤若,其中点E在直线BC上,则当时,

其中正确的有(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内接正方形边长为多少步?”现若向此三角形内投豆子,则落在其内接正方形内的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案