精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆上一点与两焦点构成的三角形的周长为,离心率为 .

(1)求椭圆的方程;

(2)设椭圆C的右顶点和上顶点分别为AB,斜率为的直线l与椭圆C交于PQ两点(点P在第一象限).若四边形APBQ面积为,求直线l的方程.

【答案】(1);(2)

【解析】

( 1)设椭圆的半焦距为c,由已知得,又,a2=b2+c2,联立解出即可得出

(2)设直线方程为:代入椭圆并整理得:,利用韦达定理表示,分别计算A,B到直线PQ的距离,即可表示四边形APBQ面积,从而得到直线l的方程.

(1)由题设得,又

解得,

.

故椭圆的方程为.

(2)设直线方程为:代入椭圆并整理得:

,则.

到直线PQ的距离为

到直线PQ的距离为

又因为在第一象限, 所以

所以

所以

解得

所以直线方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:

(2)平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SEEC;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校研究性学习小组发现,学生上课的注意力指标随着听课时间的变化而变化.老师讲课开始时学生的兴趣激增,接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.该小组发现注意力指标与上课时刻第分钟末的关系如下(,设上课开始时,t=0).若上课后第5分钟末时的注意力指标为140.

1)求的值;

2)上课后第5分钟末和第35分钟末比较,哪个时刻注意力更集中?

3)在一节课中,学生的注意力指标至少达到140的时间能保持多长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项的和为,且.

1)证明数列为等比数列,并求出数列的通项公式;

2)设,求数列的前项的和

3)设函数为常数),且(2)中的对任意的都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,数列的前n项和为.

1)求数列的通项公式;

2)若,且数列是单调递增数列,求实数a的取值范围;

3)若,对于任意给定的正整数k,是否都存在正整数pq,使得?若存在,试求出pq的一组值(不论有多少组,只要求出一组即可);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点上的点,满足.

1)当点在圆上运动时,求点的轨迹方程;

2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,AB是圆Ox轴的两个交点(点B在点A右侧),点x轴上方的动点P使直线的斜率存在且依次成等差数列.

1)求证:动点P的横坐标为定值;

2)设直线与圆O的另一个交点分别为ST.求证:点QST三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆长轴的两个端点分别为 离心率.

1)求椭圆的标准方程;

2)作一条垂直于轴的直线,使之与椭圆在第一象限相交于点,在第四象限相交于点,若直线与直线相交于点,且直线的斜率大于,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于直线对称的圆的标准方程是________.

查看答案和解析>>

同步练习册答案