【题目】已知不等式|x+3|<2x+1的解集为{x|x>m}.
(1)求m的值;
(2)设关于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求实数t的值.
【答案】
(1)解:由不等式|x+3|<2x+1,
可得 或 ,
解得x>2.
依题意m=2.
(2)解:∵|x﹣t|+|x+ |≥ = =|t|+ ,
当且仅当(x﹣t) =0时取等号,
∵关于x的方程|x﹣t|+|x+ |=m(t≠0)有解,
|t|+ ≥2,
另一方面,|t|+ =2,
∴|t|+ =2,
解得t=±1.
【解析】(1)由不等式|x+3|<2x+1,可得 或 ,解出即可得出.(2)由于|x﹣t|+|x+ |≥ = =|t|+ ,已知关于x的方程|x﹣t|+|x+ |=m(t≠0)有解,|t|+ ≥2,另一方面,|t|+ =2,即可得出.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠,则m+n的取值范围为( )
A.(0,4)
B.[0,4)
C.[0,4]
D.(4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
2014年 2015年 2016年
根据该折线图,下列结论错误的是( )
A. 年接待游客量逐年增加
B. 月接待游客量逐月增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点C在椭圆M: =1(a>b>0)上,若点A(﹣a,0),B(0, ),且 = .
(1)求椭圆M的离心率;
(2)设椭圆M的焦距为4,P,Q是椭圆M上不同的两点.线段PQ的垂直平分线为直线l,且直线l不与y轴重合.
①若点P(﹣3,0),直线l过点(0,﹣ ),求直线l的方程;
②若直线l过点(0,﹣1),且与x轴的交点为D.求D点横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数与常数,若恒成立,则称为函数的一个“P数对”,设函数的定义域为,且。
(1)若是的一个“P数对”,且,求常数的值;
(2)若(1,1)是的一个“P数对”,且在上单调递增,求函数在上的最大值与最小值;
(3)若(-2,0)是的一个“P数对”,且当时,,求k的值及在区间上的最大值与最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 的定义域是R,对于任意实数 ,恒有,且当 时, 。
(1)求证: ,且当 时,有 ;
(2)判断 在R上的单调性;
(3)设集合A=,B=,若A∩B=,求的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com