精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为矩形,平面平面的中点..

(1)求证:平面平面

(2),在线段上是否存在一点,使得二面角的余弦值为.请说明理由.

【答案】(1)见解析;(2)处或

【解析】分析:(1)由平面平面,又由平面平面,即,利用线面垂直的判定定理,证得平面,再由面面垂直的判定定理即可作出证明.

(2)如图建立空间直角坐标系,设,求得平面的一个法向量,利用向量的夹角公式,即可求解.

详解:(1)∵平面平面

平面平面

平面,又∵平面

又∵

平面平面,即

中,的中点,

平面

平面

∴平面平面

(2)如图建立空间直角坐标系,设

因为,

所以平面

为平面平面的一个法向量

平面,且,则

从而

解得,或,即处或处.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是枇把生产大国,在对枇杷的长期栽培和选育中,形成了众多的品种.成熟的枇杷味道甜美,营养颇丰,而且中医认为枇杷有润肺、止咳、止渴的功效.因此,枇杷受到大家的喜爱.某果农调查了枇杷上市时间与卖出数量的关系,统计如表所示:

结合散点图可知,线性相关.

(Ⅰ)求关于的线性回归方程(其中用假分数表示);

(Ⅱ)计算相关系数,并说明(I)中线性回归模型的拟合效果.

参考数据:

参考公式:回归直线方程中的斜率和截距的最小二乘法估计公式分别为:

;相关系数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:“你们四人中有位优秀,位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.”看后甲对大家说:“我还是不知道我的成绩.”根据以上信息,则(

A.乙可以知道两人的成绩B.丁可能知道两人的成绩

C.乙、丁可以知道自己的成绩D.乙、丁可以知道对方的成绩

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.

(1)求证:平面PAC平面PBC

(2)AB2AC1PA1,求二面角CPBA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图,是等腰直角三角形,分别为的中点,沿折起,得到如图所示的四棱锥

(1)求证:平面

(2)当四棱锥体积取最大值时,

(i) 写出最大体积;

(ii) 与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求的单调区间;

(2)设为函数的两个零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线,过点的直线的参数方程为.直线与曲线分别交于

(1)求的取值范围;

(2)若成等比数列,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数满足,则( )

A. 函数是以为周期的周期函数 B. 函数是以为周期的周期函数

C. 函数是奇函数 D. 函数是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,判断函数的单调性;

2)若函数处取得极小值,求实数a的取值范围.

查看答案和解析>>

同步练习册答案