精英家教网 > 高中数学 > 题目详情

已知平面向量

证明:

若存在不同时为零的实数,使,且,试求函数关系式

(本题10分)

(1)证明:          2分

(2)解:

          

                            10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)证明:
a
b

(2)若存在实数k和t,满足
x
=(t+2)
a
+(t2-t-5)
b
y
=-k
a
+4
b
,且
x
y
,试求出k关于t的关系式,即k=f(t);
(3)根据(2)的结论,试求出函数k=f(t)在t∈(-2,2)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
3
2
).
(1)证明:|
a
+
b
|=|
a
-
b
|; 
(2)若存在不同时为零的实数k和t,使
x
=
a
+(t2-3)
b
y
=-k
a
+t
b
,且
x
y
,试求函数关系式k=f(t);
(3)据(2)的结论,讨论关于t的方程f(t)-k=0的解的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)证明:
a
b

(2)若存在不同时为零的实数k和g,使
x
=
a
+(g2-3)
b
y
=-k
a
+g
b
,且
x
y
,试求函数关系式k=f(g);
(3)椐(2)的结论,讨论关于g的方程f(g)-k=0的解的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
2
1
2
),
b
=(
1
2
3
2
).
(1)证明:
a
b

(2)若存在不同时为零的实数k和t,使
x
=
a
+(t2-k)
b
y
=-s
a
+t
b
,且
x
y
,试求s=f(t)的函数关系式;
(3)若s=f(t)在[1,+∞)上是增函数,试求k的取值范围.

查看答案和解析>>

同步练习册答案