精英家教网 > 高中数学 > 题目详情
4.已知命题p:“双曲线$\frac{y^2}{3}-\frac{x^2}{m}=1$的离心率$e∈({\sqrt{2},+∞})$”,命题q:“$\frac{{2{x^2}}}{m}+\frac{y^2}{m-2}=1$是焦点在x轴上的椭圆方程”.若命题“p∧q”是真命题,求实数m的取值范围.

分析 根据椭圆、双曲线的方程及性质,分别求出命题p、q为真时实数m的取值范围,再求交集.

解答 解:若p为真命题,则${e^2}=\frac{3+m}{3}>2$,即m∈A=(3,+∞)…(4分)
若q为真命题,则有$\frac{m}{2}>m-2>0$,即m∈B=(2,4).…(8分)
因为,命题“p∧q”是真命题
又因为A∩B=(3,4)所以,m∈(3,4)即实数m的取值范围为(3,4).…(10分)

点评 本题考查了复合命题真假的应用,涉及到了圆锥曲线的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知$\overrightarrow a,\overrightarrow b$为非零向量,满足$({\overrightarrow a-2\overrightarrow b})⊥\overrightarrow a;({\overrightarrow b-2\overrightarrow a})⊥\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若四边形ABCD满足$\overrightarrow{AB}•\overrightarrow{BC}<0$,$\overrightarrow{CD}•\overrightarrow{DA}<0$,$\overrightarrow{BC}•\overrightarrow{CD}<0$,$\overrightarrow{DA}$$•\overrightarrow{AB}$<0,则该四边形为(  )
A.空间四边形B.任意的四边形C.梯形D.平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知以F为焦点的抛物线y2=4x上的两点A,B满足$\overrightarrow{AF}=\frac{3}{2}\overrightarrow{FB}$,则直线AB的斜率为(  )
A.$±\sqrt{3}$B.$±\sqrt{13}$C.±4D.$±2\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=2x2-lnx在其定义域内的一个子区间[k-1,k+1]内不是单调函数,则实数k的取值范围是(  )
A.[1,2)B.(1,2)C.$[{1,\frac{3}{2}})$D.$({1,\frac{3}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,一个直三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过AC,BC,A1C1,B1C1的中点,当底面ABC水平放置时,液面高为(  )
A.7B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“3<m<7”是“方程$\frac{{x}^{2}}{7-m}$+$\frac{{y}^{2}}{m-3}$=1的曲线是椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分条件又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC中,角A,B,C所对的边分别为a,b,c.若a=3,b=2,cos(A+B)=$\frac{1}{3}$,则边c=$\sqrt{17}$.

查看答案和解析>>

同步练习册答案