精英家教网 > 高中数学 > 题目详情
16.函数f(x)是定义在R上的奇函数,且满足f(x+2)=f(x),当0≤x≤1时,f(x)=2x(1-x),则f(-$\frac{2}{9}$)=-$\frac{28}{81}$.

分析 根据函数奇偶性的性质进行转化即可得到结论.

解答 解:∵f(x)是定义在R上的奇函数,
∴f(-$\frac{2}{9}$)=-f($\frac{2}{9}$),
∵当0≤x≤1时,f(x)=2x(1-x),
∴f($\frac{2}{9}$)=2×$\frac{2}{9}$(1-$\frac{2}{9}$)=$\frac{4}{9}$×$\frac{7}{9}$=$\frac{28}{81}$,
即f(-$\frac{2}{9}$)=-f($\frac{2}{9}$)=-$\frac{28}{81}$,
故答案为:-$\frac{28}{81}$

点评 本题主要考查函数值的计算和求解,根据函数奇偶性的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.化简:($\sqrt{x-3}$)2+|4-x|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数g(x)=x2-2(x∈R),f(x)=$\left\{\begin{array}{l}{g(x)+x+4,x<g(x)}\\{g(x)-x,x≥g(x)}\end{array}\right.$
(1)求f(3)
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设max(a,b)=$\left\{\begin{array}{l}{a,a>b}\\{b,a≤b}\end{array}\right.$,若max(x2-2x,t)=3,x∈[0,3],则t=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,且f(-4)=-2,当x1,x2∈[0,3],且x1≠x2时,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则给出下列命题:①f(2012)=-2 ②函数y=f(x)图象的一条对称轴为x=-6 ③函数y=f(x)在[-9,-6]上为减函数 ④方程f(x)=0在[-9,9]上有四个根.其中所有正确命题的序号为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.规定集合Ek={a1,a2,…,ak}为集合E={a1,a2,…,a10}的第k个子集,其中k=2${\;}^{{k}_{1}-1}$+2${\;}^{{k}_{2}-1}$+…+2${\;}^{{k}_{n}-1}$,若E211={a1,a2,…,am},则k1+k2+…+km的值是(  )
A.20B.21C.22D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知关于x的不等式x2-4tx+2t+30≤0的解集为∅,求实数t的范围K以及函数f(t)=(t+3)(1+|t-1|),(t∈K)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若将二次函数f(x)=x2+x的图象向右平移a(a>0)个单位长度,得到二次函数g(x)=x2-3x+2的图象,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在R上的函数,f(1)=1且对任意x∈R都有:f(x+5)≥f(x)+5与f(x+1)≤f(x)+1成立,若g(x)=f(x)+1-x,则g(2015)=1.

查看答案和解析>>

同步练习册答案