精英家教网 > 高中数学 > 题目详情

【题目】在Rt△ABC中,CA=CB=2,M,N是斜边AB上的两个动点,且MN= ,则 的取值范围为

【答案】[ ,2]
【解析】解:以C为坐标原点,CA为x轴建立平面坐标系,
则A(2,0),B(0,2),
∴AB所在直线的方程为: ,则y=2﹣x,
设M(a,2﹣a),N(b,2﹣b),且0≤a≤2,0≤b≤2不妨设a>b,
∵MN=
∴(a﹣b)2+(b﹣a)2=2,
∴a﹣b=1,
∴a=b+1,
∴0≤b≤1
=(a,2﹣a)(b,2﹣b)
=2ab﹣2(a+b)+4
=2(b2﹣b+1),0≤b≤1
∴当b=0或b=1时有最大值2;
当b= 时有最小值
的取值范围为[ ,2]
所以答案是[ ,2]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况.

学期

1

2

3

4

5

6

总分(分)

512

518

523

528

534

535

(1)请根据上表提供的数据,用相关系数说明的线性相关程度,并用最小二乘法求出关于的线性回归方程(线性相关系数保留两位小数);

(2)在第六个学期测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有人,求的分布列和期望.

参考公式:

相关系数

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的命题是( )

A.若存在,当时,有,则说函数在区间上是增函数:

B.若存在),当时,有,则说函数在区间上是增函数;

C.函数的定义域为,若对任意的,都有,则函数上一定是减函数:

D.若对任意,当时,有,则说函数在区间上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一点.
(Ⅰ)若BM=2MP,求证:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求证:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的条件下,若二面角B﹣AC﹣M的余弦值为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)当a=﹣ 时,求函数f(x)的极值;
(Ⅱ)当a>0时,求函数g(x)的单调区间;
(Ⅲ)当x∈[1,+∞)时,若y=f(x)图象上的点都在 所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求a的值和函数f(x)的定义域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)当a=﹣ 时,求函数f(x)的极值;
(Ⅱ)当a>0时,求函数g(x)的单调区间;
(Ⅲ)当x∈[1,+∞)时,若y=f(x)图象上的点都在 所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=9x﹣2a3x+3:

(1)若a=1,x[0,1]时,求fx)的值域;

(2)当x[﹣1,1]时,求fx)的最小值ha);

(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex , g(x)=kx+1.
(I)求函数y=f(x)﹣(x+1)的最小值;
(II)证明:当k>1时,存在x0>0,使对于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在实数m使对任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案