已知圆的方程为,点是坐标原点.直线与圆交于两点.
(1)求的取值范围;
(2)设是线段上的点,且.请将表示为的函数.
(1); (2) ().
解析试题分析:(1)根据题意要使直线和圆有两个交点,可转化为直线和圆的方程联立方程,即消去,可得关于的一元二次方程,通过可得方程有两解,即直线和圆有两个交点; (2)由题中条件,即先要求出,进而得出,结合(1)中所求的一元二次方程运用韦达定理即可求出与的关系式,最后由点在直线上,即可将转化为,这样即可得出,注意要由(1)中所求,得到的范围.
试题解析:(1)将代入得 则 ,(*) 由得 . 所以的取值范围是
(2)因为M、N在直线l上,可设点M、N的坐标分别为,,则
,,又,
由得,,
所以
由(*)知 ,, 所以 ,
因为点Q在直线l上,所以,代入可得,
由及得 ,即 .
依题意,点Q在圆C内,则,所以 ,
于是, n与m的函数关系为 ()
考点:1.直线和圆的位置关系;2.韦达定理的运用;3.点与圆的位置关系
科目:高中数学 来源: 题型:解答题
如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P.
(1)证明:OM·OP=OA2;
(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点,试判断直线CD与曲线E的位置关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com