精英家教网 > 高中数学 > 题目详情

已知圆的方程为,点是坐标原点.直线与圆交于两点.
(1)求的取值范围;
(2)设是线段上的点,且.请将表示为的函数.

(1); (2) ().

解析试题分析:(1)根据题意要使直线和圆有两个交点,可转化为直线和圆的方程联立方程,即消去,可得关于的一元二次方程,通过可得方程有两解,即直线和圆有两个交点; (2)由题中条件,即先要求出进而得出,结合(1)中所求的一元二次方程运用韦达定理即可求出的关系式,最后由点在直线上,即可将转化为,这样即可得出,注意要由(1)中所求,得到的范围.
试题解析:(1)将代入得 则 ,(*) 由. 所以的取值范围是  
(2)因为M、N在直线l上,可设点M、N的坐标分别为,,则
,,又,
得,,
所以 
由(*)知 ,, 所以 ,
因为点Q在直线l上,所以,代入可得,
,即 .
依题意,点Q在圆C内,则,所以 ,
于是, n与m的函数关系为  ()
考点:1.直线和圆的位置关系;2.韦达定理的运用;3.点与圆的位置关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P.

(1)证明:OM·OP=OA2
(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆经过点,且圆心在直线上.
(1)求圆的方程;
(2)若点为圆上任意一点,求点到直线的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点,试判断直线CD与曲线E的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点动点P满足.
(Ⅰ)若点的轨迹为曲线,求此曲线的方程;
(Ⅱ)若点在直线上,直线经过点且与曲线有且只有一个公共点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆经过两点,且在两坐标轴上的四个截距之和为2.
(1)求圆的方程;
(2)若为圆内一点,求经过点被圆截得的弦长最短时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆问在圆C上是否存在两点A,B关于直线对称,且以AB为直径的圆经过原点?若存在,写出直线AB的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,锐角的内心为,过点作直线的垂线,垂足为,点为内切圆与边的切点.

(Ⅰ)求证:四点共圆;
(Ⅱ)若,求的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知已知圆经过两点,且圆心C在直线上.
(Ⅰ)求圆C的方程;(Ⅱ)若直线与圆总有公共点,求实数的取值范围.

查看答案和解析>>

同步练习册答案