9£®ÈçͼËùʾ£¬ÔÚ¼¸ºÎÌåABCDEÖУ¬¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏACB=90¡ã£¬ËıßÐÎACEDÊÇÖ±½ÇÌÝÐΣ¬¡ÏDAC=90¡ã£¬AD¡ÎCE£¬AD=AC=2CE=2£¬BC¡ÍCE£¬µãFÊÇABµÄÖе㣮
£¨1£©ÇóÖ¤£ºCF¡ÎƽÃæBDE£»
£¨2£©Èô$\overrightarrow{BG}$=¦Ë$\overrightarrow{BD}$£¬AGºÍƽÃæBDEËù³ÉµÄ½ÇµÄÓàÏÒÖµÊÇ$\frac{1}{3}$£¬ÊÔÈ·¶¨µãGµÄλÖã®

·ÖÎö £¨1£©ÒÔCΪԭµã£¬CAΪxÖᣬCBΪyÖᣬCEΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÀûÓÃÏòÁ¿·¨ÄÜÖ¤Ã÷CF¡ÎƽÃæBDE£®
£¨2£©ÓÉAGºÍƽÃæBDEËù³ÉµÄ½ÇµÄÓàÏÒÖµÊÇ$\frac{1}{3}$£¬ÀûÓÃÏòÁ¿·¨ÄÜÈ·¶¨µãGµÄλÖã®

½â´ð Ö¤Ã÷£º£¨1£©¡ßÔÚ¼¸ºÎÌåABCDEÖУ¬¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏACB=90¡ã£¬
ËıßÐÎACEDÊÇÖ±½ÇÌÝÐΣ¬¡ÏDAC=90¡ã£¬AD¡ÎCE£¬AD=AC=2CE=2£¬BC¡ÍCE£¬µãFÊÇABµÄÖе㣬
¡àAC¡ÍBC£¬ÓÖAC¡ÉCE=C£¬¡àBC¡ÍƽÃæACED£¬
¡àAC¡¢BC¡¢CEÁ½Á½´¹Ö±£¬
ÒÔCΪԭµã£¬CAΪxÖᣬCBΪyÖᣬCEΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
C£¨0£¬0£¬0£©£¬A£¨2£¬0£¬0£©£¬B£¨0£¬2£¬0£©£¬F£¨1£¬1£¬0£©£¬E£¨0£¬0£¬1£©£¬D£¨2£¬0£¬2£©£¬
$\overrightarrow{CF}$=£¨1£¬1£¬0£©£¬$\overrightarrow{EB}$=£¨0£¬2£¬-1£©£¬$\overrightarrow{ED}$=£¨2£¬0£¬1£©£¬
ÉèƽÃæEBDµÄ·¨ÏòÁ¿$\overrightarrow{n}$=£¨x£¬y£¬z£©£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EB}=2y-z=0}\\{\overrightarrow{n}•\overrightarrow{ED}=2x+z=0}\end{array}\right.$£¬È¡x=1£¬µÃ$\overrightarrow{n}$=£¨1£¬-1£¬-2£©£¬
$\overrightarrow{CF}•\overrightarrow{n}$=1-1+0=0£¬
¡ßCF?ƽÃæBDE£¬¡àCF¡ÎƽÃæBDE£®
½â£º£¨2£©ÉèG£¨a£¬b£¬c£©£¬¡ß$\overrightarrow{BG}$=¦Ë$\overrightarrow{BD}$£¬¡à£¨a£¬b-2£¬c£©=£¨2¦Ë£¬-2¦Ë£¬2¦Ë£©£¬
¡àG£¨2¦Ë£¬2-2¦Ë£¬2¦Ë£©£¬$\overrightarrow{AG}$=£¨2¦Ë-2£¬2-2¦Ë£¬2¦Ë£©£¬
¡ßAGºÍƽÃæBDEËù³ÉµÄ½ÇµÄÓàÏÒÖµÊÇ$\frac{1}{3}$£¬
¡à$\sqrt{1-£¨\frac{1}{3}£©^{2}}$=$\frac{|\overrightarrow{AG}•\overrightarrow{n}|}{|\overrightarrow{AG}|•|\overrightarrow{n}|}$=$\frac{|2¦Ë-2+2¦Ë-2-4¦Ë|}{\sqrt{£¨2¦Ë-2£©^{2}+£¨2-2¦Ë£©^{2}+4{¦Ë}^{2}}•\sqrt{6}}$£¬
½âµÃ$¦Ë=1-\frac{\sqrt{6}}{8}$»ò$¦Ë=1+\frac{\sqrt{6}}{8}$£®
¡à$\overrightarrow{BG}$=£¨1-$\frac{\sqrt{6}}{8}$£©$\overrightarrow{BD}$£¬»ò$\overrightarrow{BG}$=£¨1+$\frac{\sqrt{6}}{8}$£©$\overrightarrow{BD}$£®

µãÆÀ ±¾Ì⿼²éÏßÃæƽÐеÄÖ¤Ã÷£¬¿¼²éʹµÃÏßÃæ½ÇµÄÓàÏÒֵΪ$\frac{1}{3}$µÄµãµÄλÖõÄÈ·¶¨£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏòÁ¿·¨µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¹ØÓÚÖ±Ïß2x-y=2ÓëÖ±Ïßx+2y=1µÄ¹Øϵ£¬ÕýÈ·µÄ˵·¨ÊÇ£¨¡¡¡¡£©
A£®ÖغÏB£®Ïཻµ«²»´¹Ö±C£®´¹Ö±D£®Æ½ÐÐ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ò»ÌÝÐεÄÖ±¹ÛͼÊÇÒ»¸öÈçͼËùʾµÄµÈÑüÌÝÐΣ¬ÇÒ´ËÌÝÐεÄÃæ»ýΪ$\sqrt{2}$£¬ÔòÔ­ÌÝÐεÄÃæ»ýΪ£¨¡¡¡¡£©
A£®2B£®$\sqrt{2}$C£®2$\sqrt{2}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈôF1£¬F2ÊÇË«ÇúÏß$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1µÄÁ½¸ö½¹µã£¬PÊÇË«ÇúÏßÉϵĵ㣬ÇÒ|PF1|•|PF2|=32£¬ÊÔÇó¡÷F1PF2µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª¹ØÓÚxµÄ·½³Ìx2+ax+2=0£®
£¨1£©Èô·½³ÌÓÐÁ½¸ö´óÓÚ1µÄ²»µÈʵ¸ù£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨2£©ÈôÁ½Êµ¸ùx1£¬x2Âú×ã0£¼x1£¼1£¼x2£¼4£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©ÈôÁ½Êµ¸ùx1£¬x2Âú×ã1£¼x1£¼x2£¼4£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®${¡Ò}_{1}^{2}$£¨x+2x£©dxµÈÓÚ£¨¡¡¡¡£©
A£®£¨x+2x£©|${\;}_{1}^{2}$B£®£¨x2+2xln2£©|${\;}_{1}^{2}$
C£®£¨$\frac{{x}^{2}}{2}$+2x£©|${\;}_{1}^{2}$D£®£¨$\frac{{x}^{2}}{2}$+$\frac{{2}^{x}}{ln2}$£©|${\;}_{1}^{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Éè±äÁ¿x£¬yÂú×ã|x-a|+|y-a|¡Ü1£¬Èô2x-yµÄ×î´óÖµÊÇ5£¬ÔòʵÊýaµÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÈôһϵÁк¯ÊýµÄ½âÎöʽÏàͬ£¬ÖµÓòÏàͬ£¬µ«Æ䶨ÒåÓò²»Í¬£¬Ôò³ÆÕâЩº¯ÊýΪ¡°ÌìÒ»º¯Êý¡±£¬ÄÇô½âÎöʽΪy=x2£¬ÖµÓòΪ{9£¬4£¬1}µÄ¡°ÌìÒ»º¯Êý¡±¹²ÓÐ27¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðÊÇa£¬b£¬c£®ÒÑÖªA=120¡ã£¬a=7£¬c=5£¬Ôò$\frac{sinB}{sinC}$=
A£®$\frac{8}{5}$B£®$\frac{5}{8}$C£®$\frac{5}{3}$D£®$\frac{3}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸