【题目】已知正三棱锥P﹣ABC,点P,A,B,C都在半径为 的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为 .
【答案】
【解析】解:∵正三棱锥P﹣ABC,PA,PB,PC两两垂直,
∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接圆O,
∵圆O的半径为 ,
∴正方体的边长为2,即PA=PB=PC=2
球心到截面ABC的距离即正方体中心到截面ABC的距离
设P到截面ABC的距离为h,则正三棱锥P﹣ABC的体积V= S△ABC×h= S△PAB×PC= × ×2×2×2=
△ABC为边长为2 的正三角形,S△ABC= ×
∴h= =
∴正方体中心O到截面ABC的距离为 ﹣ =
所以答案是
【考点精析】掌握球内接多面体是解答本题的根本,需要知道球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长.
科目:高中数学 来源: 题型:
【题目】已知某地每单位面积菜地年平均使用氮肥量x(单位:kg)与每单位面积蔬菜年平均产量Y(单位:t)之间的关系有如下数据:
年份 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
x/kg | 70 | 74 | 80 | 78 | 85 | 92 | 90 | 95 |
Y/t | 5.1 | 6.0 | 6.8 | 7.8 | 9.0 | 10.2 | 10.0 | 12.0 |
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
x/kg | 92 | 108 | 115 | 123 | 130 | 138 | 145 | |
Y/t | 11.5 | 11.0 | 11.8 | 12.2 | 12.5 | 12.8 | 13.0 |
(1)求x与Y之间的相关系数,并检验是否线性相关;
(2)若线性相关,求每单位面积蔬菜年平均产量Y与每单位面积菜地年平均使用氮肥量x之间的回归直线方程,并估计每单位面积菜地年平均使用氮肥150 kg时,每单位面积蔬菜的年平均产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)若二面角A′﹣MN﹣C为直二面角,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2﹣2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为 .
(2)(不等式选做题)在实数范围内,不等式|2x﹣1|+|2x+1|≤6的解集为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的两个数列{an}和{bn}满足:an+1= ,n∈N* ,
(1)设bn+1=1+ ,n∈N*,求证:数列{ }是等差数列;
(2)设bn+1= ,n∈N*,且{an}是等比数列,求a1和b1的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com