精英家教网 > 高中数学 > 题目详情
16.甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为(  )
A.12B.40C.60D.80

分析 根据题意,分①甲和乙都排在丙的左侧和②甲和乙都排在丙的右侧两种情况讨论,分别求出每种情况下的排法数目,由分类计数原理计算可得答案.

解答 解:根据题意,分2种情况讨论:
①、甲和乙都排在丙的左侧,
将甲乙安排在丙的左侧,考虑甲乙之间的顺序,有2种情况,排好后有4个空位,
在4个空位中选一个安排丁,有4种情况,排好后有5个空位,
在5个空位中选一个安排戊,有5种情况,
则甲和乙都排在丙的左侧的情况有2×4×5=40种,
②、甲和乙都排在丙的右侧,同理有40种不同的排法;
故甲和乙都排在丙的同一侧的排法种数为40+40=80种;
故选:D.

点评 本题考查排列、组合的应用,涉及分步、分类计数原理的应用,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:求这500件产品质量指标值的样本平均数$\overline{x}$和样本方差s2(同一组数据用该区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.要得到y=cos2x-1的图象,只需将函数y=sin2x的图象(  )
A.向右平移$\frac{π}{4}$个单位,再向上平移1个单位
B.向左平移$\frac{π}{4}$个单位,再向下平移1个单位
C.向右平移$\frac{π}{2}$个单位,再向上平移1个单位
D.向左平移$\frac{π}{2}$个单位,再向下平移1个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆(x-3)2+y2=1上只有一点到双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线的距离为1,则该双曲线离心率为(  )
A.$\frac{{3\sqrt{5}}}{5}$B.$\frac{{3\sqrt{3}}}{4}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设F1,F2分别是椭圆D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F2作倾斜角为$\frac{π}{3}$的直线交椭圆D于A,B两点,F1到直线AB的距离为2$\sqrt{3}$,连接椭圆D的四个顶点得到的菱形面积为2$\sqrt{5}$.
(1)求椭圆D的方程;
(2)设过点F2的直线l被椭圆D和圆C:(x-2)2+(y-2)2=4所截得的弦长分别为m,n,当m•n最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若非零向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=0,2|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则向量$\overrightarrow a$,$\overrightarrow b$夹角的大小为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆G:$\frac{{x}^{2}}{2}$+y2=1,与x轴不重合的直线l经过左焦点F1,且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点.
(1)若直线l的斜率为1,求直线OM的斜率;
(2)是否存在直线l,使得|AM|2=|CM|•|DM|成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在五面体ABCDEF中,四边形ABCD为正方形,EF∥CD,平面CDFE⊥平面ABCD,且AD=3EF,DE=DF,点G为EF中点.
(Ⅰ)求证:DG⊥BC;
(Ⅱ)M是线段BD上一点,若GM∥平面ADF,求DM:MB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,动点P(x,y)到两坐标轴的距离之和等于它到定点(1,1)的距离,记点P的轨迹为C.给出下面四个结论:
①曲线C关于原点对称;
②曲线C关于直线y=x对称;
③点(-a2,1)(a∈R)在曲线C上;
④在第一象限内,曲线C与x轴的非负半轴、y轴的非负半轴围成的封闭图形的面积小于$\frac{1}{2}$.
其中所有正确结论的序号是②③④.

查看答案和解析>>

同步练习册答案