精英家教网 > 高中数学 > 题目详情
12.已知奇函数f (-2)=5,则f ( 2 )=-5.

分析 根据函数奇偶性的定义和性质即可得到结论.

解答 解:∵函数f(x)为奇函数,且f (-2)=5,
∴f(2)=-f(-2)=-5,
故答案为:-5.

点评 本题主要考查函数奇偶性的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知P,Q是圆心在坐标原点O的单位圆上的两点,分别位于第一象限和第四象限,且P点的纵坐标为$\frac{4}{5}$,Q点的横坐标为$\frac{5}{13}$,则cos∠POQ=-$\frac{33}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x<a},B={x|1<x<2},B⊆A,则实数a的取值范围是(  )
A.a≤1B.a<1C.a≥2D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|x2-2x-3<0,x∈R},B={x|ax2-x+3<0,x∈R};
(1)当a=2时,求A∩B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“x>2”是“x2-4>0”的(  )
A.必要而不充分条件B.充分而不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将列联表补充完整(不用写计算过程);
 喜爱不喜爱合计
男生 5 
女生10  
合计  50
并求出:有多大把握认为喜爱打篮球与性别有关,说明你的理由;
(2)若从该班不喜爱打篮球的男生中随机抽取3人调查,求其中某男生甲被选到的概率.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=3|x+1|的单调递减区间是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定义域是(  )
A.(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞)B.($\frac{3}{2},+∞$)
C.$[1,\frac{3}{2})∪(\frac{3}{2},+∞)$D.$(1,\sqrt{10})∪(\sqrt{10},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆的一个顶点为A(0,-$\sqrt{2}$),焦点在x轴上.若右焦点到直线x-y+2$\sqrt{2}$=0的距离为3
(1)求椭圆的标准方程;
(2)P是椭圆上的点,且以点P及两个焦点为顶点的三角形面积等于1,求点P的坐标.

查看答案和解析>>

同步练习册答案