精英家教网 > 高中数学 > 题目详情

【题目】函数的一段图象如图所示:将的图象向右平移)个单位,可得到函数的图象,且图象关于原点对称.(1)求的值.

(2)求 的最小值,并写出的表达式.

(3)t>0,关于x的函数在区间上最小值为-2,求t的范围.

【答案】(1)答案见解析;(2)m的最小值为;(3).

【解析】试题分析:

(1)由函数的图象结合三角函数的性质可得.

(2)结合(1)的结论可得据此可得的最小值为.

(3)由题意结合(2)的结论可得:,结合函数的定义域可得:据此可得不等式:,求解不等式可得的取值范围是.

试题解析:

(1)由函数的最大值可得,函数的最小正周期为:

,当时,

故:,令可得:.

(2)结合(1)的结论可得

的最小值为将函数图象向右平移个单位可得.

(3)由题意结合(2)的结论可得:,结合函数的定义域可得:若函数能取到最小值,则:,其中

据此可得的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 .命题 :方程 表示焦点在 轴上的椭圆;命题 :圆锥曲线 的离心率 ,若命题 为真命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;
(2)从圆C外一点P(x1 , y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数, 乙组记录中有一个数据模糊,无法确认, 在图中以表示.

)如果乙组同学投篮命中次数的平均数为, 及乙组同学投篮命中次数的方差;

)在()的条件下, 分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名, 记事件A两名同学的投篮命中次数之和为17”, 求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1260 m,经测量,cos A=,cos C=

(1)求索道AB的长;

(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:已知抛物线 C1:y2=2px (p>0),直线 l 与抛物线 C 相交于 A、B 两点,且当倾斜角为 60°的直线 l 经过抛物线 C1 的焦点 F 时,有|AB|=

(Ⅰ)求抛物线 C 的方程;
(Ⅱ)已知圆 C2:(x﹣1)2+y2= ,是否存在倾斜角不为 90°的直线 l,使得线段 AB 被圆 C2 截成三等分?若存在,求出直线 l 的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:

中学

人数

30

40

20

10

为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若离散型随机变量ξ的概率分布如表所示,则a的值为( )

ξ

﹣1

1

P

4a﹣1

3a2+a


A.
B.﹣2
C. 或﹣2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形ABCD内接于圆O

(1)若AB=2,BC=6,CD=4,AC=8,求BD

(2)若AC=,BC=+1,∠ADB=,求AD2+DC2的取值范围

查看答案和解析>>

同步练习册答案