精英家教网 > 高中数学 > 题目详情
17.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右顶点为A,上、下顶点分别为 B2、B1,左、右焦点分别是F1、F2,若直线 B1F2与直线 AB2交于点 P,且∠B1PA为锐角,则离心率的范围是$0<e<\frac{{-1+\sqrt{5}}}{2}$.

分析 由题意,∠B1PA就是$\overrightarrow{{B}_{2}A}$与$\overrightarrow{{F}_{2}{B}_{1}}$的夹角,设椭圆的长半轴、短半轴、半焦距分别为a,b,c,则$\overrightarrow{{B}_{2}A}$=(a,-b)、$\overrightarrow{{F}_{2}{B}_{1}}$=(-c,-b),由向量的夹角为锐角可得-ac+b2>0,把b2=a2-c2代入不等式,从而可求椭圆离心率的取值范围.

解答 解:由题意,∠B1PA就是$\overrightarrow{{B}_{2}A}$与$\overrightarrow{{F}_{2}{B}_{1}}$的夹角,
设椭圆的长半轴、短半轴、半焦距分别为a,b,c,
则$\overrightarrow{{B}_{2}A}$=(a,-b)、$\overrightarrow{{F}_{2}{B}_{1}}$=(-c,-b),
由向量的夹角为锐角,知道$\overrightarrow{{B}_{2}A}$与$\overrightarrow{{F}_{2}{B}_{1}}$的数量积大于0,
所以有:-ac+b2>0,
把b2=a2-c2代入不等式得:a2-ac-c2>0,
除以a2得1-e-e2>0,
即e2+e-1<0,解得$\frac{-1-\sqrt{5}}{2}$<e<$\frac{\sqrt{5}-1}{2}$,
又0<e<1,所以0<e<$\frac{\sqrt{5}-1}{2}$,
故答案为:0<e<$\frac{\sqrt{5}-1}{2}$.

点评 本题考查椭圆的几何性质,解题的关键是利用$\overrightarrow{{B}_{2}A}$与$\overrightarrow{{F}_{2}{B}_{1}}$的数量积大于0,建立不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.点A,B的坐标分别是(-5,0),(5,0),直线AM,BM相交于点M,且它们的斜率之积是$\frac{4}{9}$,则点M的轨迹方程是(  )
A.$\frac{x^2}{25}+\frac{{9{y^2}}}{100}=1(x≠±5)$B.$\frac{x^2}{25}+\frac{{100{y^2}}}{9}=1(x≠±5)$
C.$\frac{x^2}{25}-\frac{{9{y^2}}}{100}=1(y≠0)$D.$\frac{x^2}{25}-\frac{{100{y^2}}}{9}=1(y≠0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆$\frac{4}{25}{x^2}+\frac{y^2}{5}$=1过右焦点有n条弦的长度成等差数列,最小弦长为数列的首项a1,最大弦长为an,若公差为d$∈[\frac{1}{6},\frac{1}{3}],那么n$的取值集合为(  )
A.{4,5,6,7}B.{4,5,6}C.{3,4,5,6}D.{3,4,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{x+b}{{1+{x^2}}}$是定义在(-1,1)上的奇函数,
(1)求函数f(x)的解析式;
(2)用单调性的定义证明函数f(x)在(-1,1)上是增函数;
(3)解不等式 f(x2-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某个几何体的三视图如下,根据图中标出的尺寸,那么可得这个几何体最长的棱长是(  )
A.2B.$\sqrt{5}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一项实验中获得的一组关于变量y,t之间的数据整理后得到如图所示的散点图.下列函数中可以
近视刻画y与t之间关系的最佳选择是(  )
A.y=atB.y=logatC.y=at3D.y=a$\sqrt{t}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.${∫}_{-1}^{1}$$\frac{{x}^{3}si{n}^{2}x}{{x}^{4}+{x}^{2}+1}$dx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列函数的不定积分.
(1)∫$\frac{1}{\sqrt{x}+\sqrt{x+1}}$dx;
(2)∫$\frac{1}{(x-1)(x+2)}$dx.
(3)∫$\frac{{x}^{2}}{{a}^{2}+{x}^{2}}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x+1|+|2x-1|的最小值为a.
(1)求a的值;
(2)已知m,n>0,m+n=a,求$\frac{1}{m}+\frac{4}{n}$的最小值.

查看答案和解析>>

同步练习册答案