精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M,N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)过点A(-
p2
,0)
的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,求证:直线RQ必过定点.
分析:(1)设P(x0,y0)为抛物线C:y2=2px(p>0)上一点,作PH⊥y轴,垂足为H,连接PF,由|PF|=|PH|+1,知x0+
P
2
=x0+1
,由此能求出所求抛物线C的方程.
(2)直线RQ必过定点.由F(1,0),设M(x1,y1),N(x2,y2),MN:y=k(x-1)(k>0),与y2=4x联立,得ky2-4y-4k=0,由|MF|=2|NF|,能求出所求的直线方程.
(3)由A(-1,0),设P(x1,y1),Q(x2,y2),PQ:y=k(x+1),与y2=4x联立得ky2-4y+4k=0,故y1+y2=
4
k
y1y2=4
,由点P关于x轴的对称点是R,知直线RQ的直线为
y+y1
y2+y1
=
x-x1
x2 -x1
,由此能够证明直线RQ必过定点.
解答:解:(1)设P(x0,y0)为抛物线C:y2=2px(p>0)上一点,
作PH⊥y轴,垂足为H,连接PF,
∵|PF|=|PH|+1,
x0+
P
2
=x0+1

∴p=2,
∴所求抛物线C的方程为y2=4x.
(2)直线RQ必过定点.由(1)得焦点坐标为F(1,0),
设M(x1,y1),N(x2,y2),MN:y=k(x-1)(k>0),
与y2=4x联立,得
ky2-4y-4k=0,
y1+y2=
4
k
,y1y2=-4,
由|MF|=2|NF|,
则y1=-2y2,∴k=2
2

因此所求的直线方程为y=2
2
(x-1)

(3)∵A(-1,0),设P(x1,y1),Q(x2,y2),
PQ:y=k(x+1),与y2=4x联立得ky2-4y+4k=0,
y1+y2=
4
k
y1y2=4

∵点P关于x轴的对称点是R,则R(x1,-y1),
∴直线RQ的直线为
y+y1
y2+y1
=
x-x1
x2 -x1

即有
y+y1
y2+y1
=4•
x-x1
y22-y12

∴(y2-y1)(y+y1)=4x-4x1
∴(y2-y1)y+y2y1-y12=4x-4x1
∵(y2-y1)y=4(x-1),
∴直线RQ必过定点F(1,0).
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案