精英家教网 > 高中数学 > 题目详情
19.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a$=(1,-2).
(1)若$|\overrightarrow c|=2\sqrt{5}$,且$\overrightarrow c∥\overrightarrow a$,求向量$\overrightarrow c$的坐标;
(2)若$|\overrightarrow b|=1$,且$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-2\overrightarrow b$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角θ的余弦值.

分析 (1)设$\overrightarrow c=(x,y)$,则由条件可得$\left\{\begin{array}{l}{1•y+2•x=0}\\{{x}^{2}{+y}^{2}=20}\end{array}\right.$,求得x、y的值,可得向量$\overrightarrow c$的坐标.
(2)由条件利用两个向量垂直的性质求得$\overrightarrow a•\overrightarrow b=3$,可得cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$ 的值.

解答 解:(1)设$\overrightarrow c=(x,y)$,由$\overrightarrow c∥\overrightarrow a$和$|\overrightarrow{c|}=2\sqrt{5}$可得:$\left\{\begin{array}{l}{1•y+2•x=0}\\{{x}^{2}{+y}^{2}=20}\end{array}\right.$,∴$\left\{\begin{array}{l}{x=-2}\\{y=4}\end{array}\right.$ 或$\left\{\begin{array}{l}{x=2}\\{y=-4}\end{array}\right.$,
∴$\overrightarrow c=(-2,4)$,或$\overrightarrow c=(2,-4)$.
(2)∵$|\overrightarrow b|=1$,$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,∴$(\overrightarrow a+\overrightarrow b)•(\overrightarrow a-2\overrightarrow b)=0$,
即${\overrightarrow a^2}-\overrightarrow a•\overrightarrow b-2{\overrightarrow b^2}=0$,∴$|\overrightarrow a{|^2}-\overrightarrow a•\overrightarrow b-2|\overrightarrow b{|^2}=0$,
∴$5-\overrightarrow a•\overrightarrow b-2=0$,所以$\overrightarrow a•\overrightarrow b=3$,∴$cosθ=\frac{\overrightarrow a•\overrightarrow b}{|\overrightarrow a|•|\overrightarrow b|}=\frac{{3\sqrt{5}}}{5}$.

点评 本题主要考查两个向量共线、垂直的性质,用数量积表示两个向量的夹角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知f(x)=xlnx-x.
(1)求f(x)在[$\frac{1}{e}$,e]上的最大值和最小值
(2)证明:对任意x∈[$\frac{1}{e}$,e],$\frac{1}{2}$x-$\frac{1}{3}$x2-$\frac{4}{3x}$+1<lnx成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.二次函数f(x)满足f(2+x)=f(2-x),又f(2)=1,f(0)=3,若f(x)在[0,m]上有最小值1,最大值3,则m的取值范围是(  )
A.2≤m≤4B.0<m≤2C.m>0D.m≥2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.实验人员获取一组数据如表:则拟合效果最接近的一个为(  )
x1.99345.16.12
y1.54.047.51218.01
A.y=2x-2B.y=$\frac{1}{2}$(x2-1)C.y=log2xD.y=${(\frac{1}{2})^x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线(3-7a+2a2)x-(9-a2)y+3a2=0的倾斜角的正弦为$\frac{{\sqrt{2}}}{2}$,则a的值为(  )
A.$-\frac{2}{3}$或4B.3或$-\frac{2}{3}$C.$-\frac{2}{3}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx+c满足:对所有实数x都有f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;      
(2)求f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,直线x+y-2n=0(n∈N*)经过点(an,Sn).
(1)求出a1、a2、a3、a4的值;
(2)请你猜想通项公式an的表达式,并选择合适的方法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(3,-4),$\overrightarrow{b}$=(2,x),$\overrightarrow{c}$=(2,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{a}$⊥$\overrightarrow{c}$,求:
(1)$\overrightarrow{b}$•$\overrightarrow{c}$;       
(2)$\overrightarrow{b}$、$\overrightarrow{c}$的夹角;   
(3)|$\overrightarrow{b}$+$\overrightarrow{c}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某种鲜花进价每束2.5元,售价每束5元,若卖不出,则以每束1.6元的价格处理掉,某节日鲜花的需求量X(单位:束)的分布列为
X200300400500
P0.200.350.300.15
(Ⅰ)若进鲜花400束,是写出销售量S(单位:束)的分布列,并求利润Y的均值.
(Ⅱ)若进鲜花n束(300<n≤500),求n取何值时可使利润Y的均值最大?

查看答案和解析>>

同步练习册答案