精英家教网 > 高中数学 > 题目详情
13.直线ax-y-1=0与直线(2a+3)x-ay+1=0平行,则a=(  )
A.3B.-1C.-1或3D.-1或3或0

分析 利用两条直线平行,它们的斜率相等或它们的斜率同时不存在的性质求解.

解答 解:因为直线ax-y-1=0的斜率存在,
要使两条直线平行,必有a=$\frac{2a+3}{a}$,解得a=3或a=-1,
当a=-1时,已知直线-x-y-1=0与直线x+y+1=0,两直线重合,
则实数a的值为 3.
故选:A.

点评 本题考查两条直线平行的判定,是基础题.本题先用斜率相等求出参数的值,再代入验证,是解本题的常用方法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知数列{an}中,a1=-16,3an=3an-1+2(n∈N*),若anan+2<0,则n=24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数$f(x)=Asin(ωx-\frac{π}{6})+B(A>0,ω>0)$的最大值为3,最小值为-1,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,则$f(\frac{π}{3})$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=\frac{{{{(x-4)}^0}}}{{\sqrt{{x^2}-4x+3}}}$的定义域为(-∞,1)∪(3,4)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x,则函数f(x),x∈R的解析式为f(x)=$\left\{\begin{array}{l}{x}^{2}+2x,(x≤0)\\-{x}^{2}+2x,(x>0)\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若直线ax-by+2=0(a>0,b>0)平分圆x2+y2+2x-2y-1=0的面积,则$\frac{1}{a}+\frac{3}{b}$的最小值为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知ABCD和ABEF是两个全等的矩形,M、N分别为AC、FB上的点,且AM=FN,过点M作MP∥CB,交AB于P,求证:平面MNP∥平面CEB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:log0.2x(x+2)≥log0.23,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知动点P在函数y=cosx,(x<0)的图象上,动点Q在y=$\sqrt{4-{x}^{2}}$的图象上,则关于y轴对称的点P,Q共有(  )
A.0对B.1对C.2对D.3对

查看答案和解析>>

同步练习册答案