精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形ABCD的边长为1,P,Q分别为AB,DA上动点,且△APQ的周长为2,设 AP=x,AQ=y.

(1)求x,y之间的函数关系式y=f(x);
(2)判断∠PCQ的大小是否为定值?并说明理由;
(3)设△PCQ的面积分别为S,求S的最小值.

【答案】
(1)解:由已知可得PQ=2﹣x﹣y,根据勾股定理有(2﹣x﹣y)2=x2+y2

化简得:y= (0<x<1)


(2)解:tan∠DCQ=1﹣y,tan∠BCP=1﹣x,

tan(∠DCQ+∠BCP)= =1

∵∠DCQ+∠BCP∈(0, ),

∴∠DCQ+∠BCP=

∴∠PCQ= ﹣(∠DCQ+∠BCP)= ,(定值)


(3)解:S=1﹣ (1﹣x)﹣ (1﹣y)= (x+y﹣xy)=

令t=2﹣x,t∈(1,2),

∴S= (t+ )﹣1,

∴t= 时,S的最小值为 ﹣1


【解析】(1)由已知可得PQ=2﹣x﹣y,根据勾股定理有(2﹣x﹣y)2=x2+y2 , 即可求x,y之间的函数关系式y=f(x);(2)求得∴∠DCQ+∠BCP= ,即可判断∠PCQ的大小;(3)表示△PCQ的面积,利用基本不等式求S的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x3﹣3x﹣a有3个不同零点,则实数a的取值范围是(
A.(﹣2,2)
B.[﹣2,2]
C.(﹣∞,﹣1)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(n)=(1+ n﹣n,其中n为正整数.
(1)求f(1),f(2),f(3)的值;
(2)猜想满足不等式f(n)<0的正整数n的范围,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2 , x1+x2=1﹣a,则(
A.f(x1)<f(x2
B.f(x1)=f(x2
C.f(x1)>f(x2
D.f(x1)与f(x2)的大小不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P﹣ABC的四个顶点都在球D的表面上,PA⊥平面ABC,AB⊥BC,PA=3,AB=BC=2,则球O的表面积为(
A.13π
B.17π
C.52π
D.68π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在海岸线一侧处有一个美丽的小岛,某旅游公司为方便游客,在上设立了两个报名点,满足中任意两点间的距离为.公司拟按以下思路运作:先将两处游客分别乘车集中到之间的中转点(异于两点),然后乘同一艘轮游轮前往岛.据统计,每批游客处需发车2辆, 处需发车4辆,每辆汽车每千米耗费元,游轮每千米耗费元.(其中是正常数)设,每批游客从各自报名点到岛所需运输成本为元.

(1) 写出关于的函数表达式,并指出的取值范围;

(2) 问:中转点距离处多远时, 最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sin(x+ )cos(x+ )+sin2x+a的最大值为1.
(1)求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移 个单位,得到函数g(x)的图象,若方程g(x)=m在x∈[0, ]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四边形ABCD中,已知 =(6,1), =(x,y), =(﹣2,﹣3).
(1)求用x表示y的关系式;
(2)若 ,求x、y值.

查看答案和解析>>

同步练习册答案