精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xlnx,g(x)=-
1
2
x2+
a
2
x-
3
2

(Ⅰ)求f(x)在x=e处的切线方程;
(Ⅱ)在函数f(x)与g(x)的公共定义域内f(x)的图象始终在g(x)图象的上方,求实数a的范围;
(Ⅲ)是否存在实数s,t(0<s<t),使x∈[s,t]时,函数h(x)=
2f(x)+3
x
+x-4图象恒在x轴上方且值域为[2lns,2lnt]?若存在,求出s,t的值,若不存在,请说明理由.
考点:利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程
专题:计算题,函数的性质及应用,导数的综合应用
分析:(Ⅰ)求导f′(x)=lnx+1,f′(e)=lne+1=2,又由f(e)=e;从而写出切线方程;
(Ⅱ)函数f(x)与g(x)的公共定义域为(0,+∞);从而得x∈(0,+∞)时,f(x)-g(x)>0恒成立;即a<2lnx+x+
3
x
,从而化为函数的最值问题;
(Ⅲ)h(x)=
2f(x)+3
x
+x-4=2lnx+x+
3
x
-4,可知h(x)的图象在区间[s,t]上恒在x轴上方时1∉[s,t];从而分类讨论.
解答: 解:(Ⅰ)f′(x)=lnx+1,f′(e)=lne+1=2,
又f(e)=e;
故f(x)在x=e处的切线方程为y-e=2(x-e);
故切线方程为2x-y-e=0;
(Ⅱ)函数f(x)与g(x)的公共定义域为(0,+∞);
由题意知,x∈(0,+∞)时,f(x)-g(x)>0恒成立;
即a<2lnx+x+
3
x

令m(x)=2lnx+x+
3
x

则m′(x)=
2
x
+1-
3
x2
=
(x+3)(x-1)
x2

故m(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
故m(x)≥m(1)=4;
故a<4;
(Ⅲ)h(x)=
2f(x)+3
x
+x-4
=2lnx+x+
3
x
-4,
则由(Ⅱ)知,h(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
∵h(1)=0<s,且h(x)的图象在区间[s,t]上恒在x轴上方,
∴1∉[s,t];
①若0<s<t<1,则lns<0,lnt<0,不合题意;
②若1<s<t,由题意得,
h(s)=2lns
h(t)=2lnt

则s,t是方程x+
3
x
-4=0的解,
而方程x+
3
x
-4=0的解为1,3;
故不合题意,
故不存在.
点评:本题考查了导数的综合应用及恒成立问题化为最值问题的处理方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x=
1
3+2
2
,y=3-
2
,集合M={m|m=a+b
2
,a∈Q,b∈Q},那么x,y与集合M的关系是(  )
A、x∈M,y∈M
B、x∈M,y∉M
C、x∉M,y∈M
D、x∉M,y∉M

查看答案和解析>>

科目:高中数学 来源: 题型:

己知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥S-ABCD中,底面ABCD为直角梯形,其中AD∥BC,∠BAD=90°,SA⊥底面ABCD,SA=AB=BC=2,tan∠SDA=
1
2
,E为SD的中点.
(Ⅰ)求证:CE∥平面SAB;
(Ⅱ)求三棱锥D-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

高和底面直径相等的圆柱的表面积和球O的表面积相等,则该圆柱与球O的体积之比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1,侧面BC1是边长为3的正方形,AA1到侧面BC1的距离为2,E为侧棱CC1上一点,且C1E=1,则三棱锥E-A1B1C1的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x-aex(a∈R,e为自然对数的底).
(1)讨论函数f(x)的单调性;
(2)若f(x)≤e2x对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=4x2关于直线x-y=0对称的抛物线的准线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
lnx
x
+2x,0<a<b<e,则(  )
A、f(a)>f(b)
B、f(a)<f(b)
C、f(a)=f(b)
D、f(a)f(b)>0

查看答案和解析>>

同步练习册答案