精英家教网 > 高中数学 > 题目详情
如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为70颗,以此实验数据为依据,可以估计出椭圆的面积大约为(  )
A、6B、12C、18D、20
考点:几何概型
专题:概率与统计
分析:欲估计出椭圆的面积,可利用概率模拟,只要利用平面图形的面积比求出落在椭圆外的概率即可.
解答: 解:∵黄豆落在椭圆外的概率为:
矩形面积-椭圆面积
矩形面积
=
70
300
=
24-S
24

解得:S=18.4≈18.
故选C.
点评:本题考查几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,称为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
满足
a
=(2,0),|
b
|=1,
a
b
的夹角为120°,求|
a
+2
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知经过抛物线C:x2=2py焦点F的直线l:y=kx+1与抛物线C交于A、B两点,若存在一定点D(0,b),使得无论AB怎样运动,总有直线AD的斜率与BD的斜率互为相反数.
(Ⅰ)求p与b的值;
(Ⅱ)对于椭圆C':
x2
5
+y2=1,经过它左焦点F′的直线l′与椭圆C′交于A′、B′两点,是否存在定点D′,使得无论A′B′怎样运动,都有∠A′D′F′=∠B′D'F′?若存在,求出D′坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱柱ABC-A1B1C1的各棱相等,AA1⊥底面ABC,E是AA1的中点.
(Ⅰ)求证:BE⊥CB1
(Ⅱ)在AB上找一点P,使P-CBE的体积等于C-ABE体积的
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x-2cosθ)2+(y-2sinθ)2=1与圆C2:x2+y2=1,在下列说法中:
①对于任意的θ,圆C1与圆C2始终有四条公切线;
②对于任意的θ,圆C1与圆C2始终相切;
③P,Q分别为圆C1与圆C2上的动点,则|PQ|的最大值为4.
④直线l:2(m+3)x+3(m+2)y-(2m+5)=0(m∈R)与圆C2一定相交于两个不同的点;
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

矩形ABCD中AB与BC长度之比为2:3,在矩形ABCD内任取一点P,则使∠APB<90°的概率为(  )
A、
π
12
B、
2
3
C、1-
π
8
D、1-
π
12

查看答案和解析>>

科目:高中数学 来源: 题型:

方程4x2-12x+k-3=0没有实根,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的公差不为0,它的前n项和Sn=(a+1)n2+a,则实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
2x+a,x>2
x+3a,x≤2
的值域为R,则a的取值范围是
 

查看答案和解析>>

同步练习册答案