精英家教网 > 高中数学 > 题目详情
已知数列an的前n项和Sn=
32
(an-1)
,n∈N+
(1)求an的通项公式;
(2)设n∈N+,集合An={y|y=ai,i≤n,i∈N+},B={y|y=4m+1,m∈N+}.现在集合An中随机取一个元素y,记y∈B的概率为p(n),求p(n)的表达式.
分析:(1)直接根据an和Sn的关系:an=Sn-Sn-1 (n≥2)求解数列的通项公式(注意检验n=1是否成立)
(2)对i取奇数和偶数两种情况分别讨论求出对应的集合An,再求出对应的p(n)的表达式即可.
解答:解:(1)因为Sn=
3
2
(an-1)
,n∈N+,所以Sn+1=
3
2
(an+1-1)

两式相减,得Sn+1-Sn=
3
2
(an+1-an)
,即an+1=
3
2
(an+1-an)

∴an+1=3an,n∈N+.(3分)
S1=
3
2
(a1-1)
,即a1=
3
2
(a1-1)
,所以a1=3.
∴an是首项为3,公比为3的等比数列.
从而an的通项公式是an=3n,n∈N+.(6分)
(2)设y=ai=3i∈An,i≤n,n∈N+
当i=2k,k∈N+时,
∵y=32k=9k=(8+1)k=Ck08k+Ck18k-1++Ckk-18+Ckk=4×2(Ck08k-1+Ck18k-2++Ckk-1)+1,∴y∈B.(9分)
当i=2k-1,k∈N+时,
∵y=32k-1=3×(8+1)k-1=3×(Ck-108k-1+Ck-118k-2++Ck-1k-28+Ck-1k-1
=4×6(Ck-108k-2+Ck-118k-3++Ck-1k-2)+3,∴y∉B.(12分)

又∵集合An含n个元素,
∴在集合An中随机取一个元素y,有y∈B的概率p(n)=
1
2
,n为偶数
n-1
2n
,n为奇数
.(14分)
点评:本题考查了已知前n项和为Sn求数列{an}的通项公式,根据an和Sn的关系:an=Sn-Sn-1 (n≥2)求解数列的通项公式.另外,须注意公式成立的前提是n≥2,所以要验证n=1时通项是否成立,若成立则:an=Sn-Sn-1 (n≥1);若不成立,则通项公式为分段函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an的前n项和为Sn,且a1=1,Sn=n2an(n∈N),
(1)试计算S1,S2,S3,S4,并猜想Sn的表达式;
(2)证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列
an
的前n项和为Sn,且Sn=1-an (n∈N*
(I )求数列
an
的通项公式;
(Ⅱ)已知数列
bn
的通项公式bn=2n-1,记cn=anbn,求数列
cn
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an}的前n项和为sn,满足(p-1)sn=p2-an,其中p为正常数,且p≠1.
(1)求证:数列{an}为等比数列,并求出{an}的通项公式;
(2)若存在正整数M,使得当n≥M时,a1a4a7…a3n-2>a36恒成立,求出M的最小值;
(3)当p=2时,数列an,2xan+1,2yan+2成等差数列,其中x,y均为整数,求出x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的前n项和为Sn
(Ⅰ)若数列an是等比数列,满足2a1+a3=3a2,a3+2是a2,a4的等差中项,求数列an的通项公式;
(Ⅱ)是否存在等差数列ann∈N*,使对任意n∈N*都有anSn=2n2(n+1)?若存在,请求出所有满足条件的等差数列;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案