精英家教网 > 高中数学 > 题目详情
(2012•上海)对于数集X={-1,x1,x2,…,xn},其中0<x1<x2<…<xn,n≥2,定义向量集Y={
a
|
a
=(s,t),s∈X,t∈X},若对任意
a1
∈Y
,存在
a2
∈Y
,使得
a1 
a2
=0
,则称X具有性质P.例如{-1,1,2}具有性质P.
(1)若x>2,且{-1,1,2,x}具有性质P,求x的值;
(2)若X具有性质P,求证:1∈X,且当xn>1时,x1=1;
(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,xn的通项公式.
分析:(1)在Y中取
a1
=(x,2),根据数量积的坐标公式,可得Y中与
a1
垂直的元素必有形式(-1,b),所以x=2b,结合x>2,可得x的值.
(2)取
a1
=(x1,x1),
a2
=(s,t)根据
a1 
a2
=0
,化简可得s+t=0,所以s、t异号.而-1是数集X中唯一的负数,所以s、t中的负数必为-1,另一个数是1,从而证出1∈X,最后通过反证法,可以证明出当xn>1时,x1=1.
(3)[解法一]先猜想结论:xi=qi-1,i=1,2,3,…,n.记Ak═{-1,x1,x2,…,xk},k=2,3,…,n,通过反证法证明出引理:若Ak+1具有性质P,则Ak也具有性质P.最后用数学归纳法,可证明出xi=qi-1,i=1,2,3,…,n;
[解法二]设
a1
=(s1,t1),
a2
=(s2,t2),则
a1
a2
=0
等价于
s1
t1
=-
t2
s2
,得到一正一负的特征,再记B={
s
t
|s∈X,t∈X且|s|>|t|},则可得结论:数集X具有性质P,当且仅当数集B关于原点对称.又注意到-1是集合X中唯一的负数,B∩(-∞,0)={-x2,-x3,-x4,…,-xn},共有n-1个数,所以B∩(0.+∞)也有n-1个数.最后结合不等式的性质,结合三角形数阵加以说明,可得
xn
xn-1
=
xn-1
xn-2
=…=
x2
x1
,最终得到数列的通项公式是xk=x1•(
x2
x1
k-1=qk-1,k=1,2,3,…,n.
解答:解:(1)选取
a1
=(x,2),则Y中与
a1
垂直的元素必有形式(-1,b),所以x=2b,
又∵x>2,∴只有b=2,从而x=4.
(2)取
a1
=(x1,x1)∈Y,设
a2
=(s,t)∈Y,满足
a1 
a2
=0
,可得(s+t)x1=0,s+t=0,所以s、t异号.
因为-1是数集X中唯一的负数,所以s、t中的负数必为-1,另一个数是1,所以1∈X,
假设xk=1,其中1<k<n,则0<x1<1<xn
再取
a1
=(x1,xn)∈Y,设
a2
=(s,t)∈Y,满足
a1 
a2
=0
,可得sx1+txn=0,
所以s、t异号,其中一个为-1
①若s=-1,则x1=txn>t≥x1,矛盾;
②若t=-1,则xn=sx1<s≤xn,矛盾;
说明假设不成立,由此可得当xn>1时,x1=1.
(3)[解法一]猜想:xi=qi-1,i=1,2,3,…,n
记Ak═{-1,x1,x2,…,xk},k=2,3,…,n
先证明若Ak+1具有性质P,则Ak也具有性质P.
任取
a1
=(s,t),s、t∈Ak,当s、t中出现-1时,显然有
a2
满足
a1
a2
=0

当s、t中都不是-1时,满足s≥1且t≥1.
因为Ak+1具有性质P,所以有
a2
=(s1,t1),s1、t1∈Ak+1,使得
a1
a2
=0
,从而s1、t1其中有一个为-1
不妨设s1=-1,
假设t1∈Ak+1,且t1∉Ak,则t1=xk+1.由(s,t)(-1,xk+1)=0,得s=txk+1≥xk+1,与s∈Ak矛盾.
所以t1∈Ak,从而Ak也具有性质P.
再用数学归纳法,证明xi=qi-1,i=1,2,3,…,n
当n=2时,结论显然成立;
假设当n=k时,Ak═{-1,x1,x2,…,xk}具有性质P,则xi=qi-1,i=1,2,…,k
当n=k+1时,若Ak+1═{-1,x1,x2,…,xk+1}具有性质P,则Ak═{-1,x1,x2,…,xk}具有性质P,
所以Ak+1═{-1,q,q2,…,qk-1,xk+1}.
a1
=(xk+1,q),并设
a2
=(s,t)∈Y,满足
a1 
a2
=0
,由此可得s=-1或t=-1
若t=-1,则xk+1=
q
s
<q
,不可能
所以s=-1,xk+1=qt=qj≤qk且xk+1>qk-1,因此xk+1=qk
综上所述,xi=qi-1,i=1,2,3,…,n
[解法二]设
a1
=(s1,t1),
a2
=(s2,t2),则
a1
a2
=0
等价于
s1
t1
=-
t2
s2

记B={
s
t
|s∈X,t∈X且|s|>|t|},则数集X具有性质P,当且仅当数集B关于原点对称
注意到-1是集合X中唯一的负数,B∩(-∞,0)={-x2,-x3,-x4,…,-xn},共有n-1个数.
所以B∩(0,+∞)也有n-1个数.
由于
xn
xn-1
xn
xn-2
xn
xn-3
<…<
xn
x2
xn
x1
,已经有n-1个数
对以下三角形数阵:
xn
xn-1
xn
xn-2
xn
xn-3
<…<
xn
x2
xn
x1

                 
xn-1
xn-2
xn-1
xn-3
xn-1
xn-4
<…<
xn-1
x1

                 …
                 
x2
x1

注意到
xn
x1
xn-1
x1
xn-2
x1
>…>
x2
x1
,所以
xn
xn-1
=
xn-1
xn-2
=…=
x2
x1

从而数列的通项公式是xk=x1•(
x2
x1
k-1=qk-1,k=1,2,3,…,n.
点评:本题以向量的数量积的坐标运算为载体,着重考查了数列的通项公式的探索、集合元素的性质和数列与向量的综合等知识点,属于难题.本题是一道综合题,请同学们注意解题过程中的转化化归思想、分类讨论的方法和反证法的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:
①失事船的移动路径可视为抛物线y=
1249
x2

②定位后救援船即刻沿直线匀速前往救援;
③救援船出发t小时后,失事船所在位置的横坐标为7t
(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.
(2)问救援船的时速至少是多少海里才能追上失事船?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)若不等式x2-kx+k-1>0对x∈(1,2)恒成立,则实数k的取值范围是
(-∞,2]
(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海模拟)若函数f(x)定义域为R,满足对任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),则称f(x)为“V形函数”.
(1)当f(x)=x2时,判断f(x)是否为V形函数,并说明理由;
(2)当f(x)=lg(x2+2)时,证明:f(x)是V形函数;
(3)当f(x)=lg(2x+a)时,若f(x)为V形函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海二模)已知向量
m
=(sin(2x+
π
6
),sinx)
n
=(1,sinx),f(x)=
m
n

(1)求函数y=f(x)的最小正周期及单调递减区间;
(2)记△ABC的内角A,B,C的对边分别为a,b,c.若f(
B
2
)=
2
+1
2
,b=
5
,c=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)已知数列{an}、{bn}、{cn}满足(an+1-an)(bn+1-bn)=cn(n∈N*)
(1)设cn=3n+6,{an}是公差为3的等差数列.当b1=1时,求b2、b3的值;
(2)设cn=n3ann2 -8n.求正整数k,使得对一切n∈N*,均有bn≥bk
(3)设cn=2n +nan=
1+(-1)n2
.当b1=1时,求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案