精英家教网 > 高中数学 > 题目详情
已知命题P:复数z1=3-3i,复数z2=
m2-4m-10
m+2
+(m2-2m-12)i,(m∈R)
,z1+z2是虚数;命题Q:关于x的方程2x2-4(m-1)x+m2+7=0的两根之差的绝对值小于2.若P∧Q为真命题,求实数m的取值范围.
由题意知,z1+z2=
m2-4m-10
m+2
+(m2-2m-12)i+3-3i
=
m2-m-4
m+2
+(m2-2m-15)i

若命题P为真,z1+z2是虚数,则有m2-2m-15≠0且m≠-2
∴m的取值范围为m≠5且m≠-3且m≠-2(m∈R);
若命题Q为真,则有
△=16(m-1)2-8(m2+7)≥0
|x1-x2|<2⇒(x1+x2)2-4x1x2<4

x1+x2=2(m-1),x1x2=m2+7
∴有
m2-4m-5≥0
m2-4m-7<0
⇒2-
11
<m≤-1
5≤m<2+
11

由复合命题真值表得,若P∧Q为真命题,则命题p、q都是真命题,
∴实数m的取值范围为(2-
11
,-1]∪(5,2+
11
)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知p:函数f(x)=logax(a>0且a≠1)在(0,+∞)上单调递增;q:关于x的不等式ax2-ax+1>0的解集为R.若“p且q”为假,“p或q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知命题p:不等式|x|≥m的解集是R,命题q:f(x)=
2-m
x
在区间(0,+∞)上是减函数,若命题“p∨q”为真,则实数m的范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:“存在实数a,使直线x+ay-2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆
x2
8
+
y2
2
=1
内部”,若命题“p且?q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知m∈R,设p:复数z1=(m-1)+(m+3)i(i是虚数单位)在复平面内对应的点在第二象限,q:复数z2=1+(m-2)i的模不超过
10

(1)当p为真命题时,求m的取值范围;
(2)若命题“p且q”为假命题,“p或q”为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a∈R,设p:函数f(x)=x2+(a-1)x是区间(1,+∞)上的增函数,q:方程x2-ay2=1表示双曲线.
(1)若p为真命题,求实数a的取值范围;
(2)若“p且q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知命题p:方程
x2
m-4
+
y2
m-2
=1
表示焦点在y轴的双曲线;命题q:关于x的不等式x2-2x+m>0的解集是R;
若“p∧q”是假命题,“p∨q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x-m(m∈R),g(x)=ax2+
1
2
ax+1
(a∈R),h(x)=2|x-a|
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题“p或q”为真,“非p”为假,则必有(  )
A.p真q假B.q真p假
C.q真p真D.p真,q可真可假

查看答案和解析>>

同步练习册答案