精英家教网 > 高中数学 > 题目详情
4.某高校在2015年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示
(Ⅰ)根据频率分布直方图计算出样本数据的众数和中位数;(结果保留1位小数)
(Ⅱ)为了能选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
( III)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.

分析 (Ⅰ)根据频率分布直方图计算出样本数据的众数和中位数;
(Ⅱ)因为在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生,而这三个小组共有60人,利用每一个小组在60人中所占的比例,乘以要抽取的人数,得到结果;
(III)利用列举法,确定基本事件的个数,即可求第四组至少有一名学生被甲考官面试的概率.

解答 解:(Ⅰ)众数为167.5;中位数为171.7…(4分)
(Ⅱ)由题设可知,第三组的频率为0.06×5=0.3
第四组的频率为0.04×5=0.2
第五组的频率为0.02×5=0.1
第三组的人数为0.3×100=30,
第四组的人数为0.2×100=20
第五组的人数为0.1×100=10,
因为第三、四、五组共有60名学生,
所以利用分层抽样在60名学生中抽取6名学生,
每组抽到的人数分别为:
第三组$\frac{30}{60}×6=3$,
第四组$\frac{20}{60}×6$=2,
第五组|PF1|:|PF2|=3:2,
所以第三、四、五组分别抽取3人,2人,1人.…(8分)
(III)设第三组的3位同学为A1、A2、A3,第四组的2名学生为B1、B2
第五组的1位同学为C1则从6位同学中抽2位同学有:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),
(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),
(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1)共15种可能…(10分)
其中第四组的2位同学B1,B2中至少1位同学入选有
(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),
(A3,B2)(B1,B2),(B1,C1),(B2,C1)共9种可能…(11分)
所以第四组至少有1位同学被甲考官面试的概率为$\frac{9}{15}=\frac{3}{5}$…(12分)

点评 本题考查频率分布直方图、分层抽样、古典概型的基本知识,是一道常见的高考题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知命题p:函数f(x)=|cosx|的最小正周期为2π;命题q:?x,使2x>3x,则下列命题是真命题的是(  )
A.p∧qB.p∧(¬q)C.p∨(¬q)D.p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知长方形ABCD中,AB=1,AD=$\sqrt{2}$,现将长方形沿对角线BD折起,使AC=a,得到一个四面体A-BCD,如图所示.
(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.
(2)当四面体A-BCD体积最大时,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将所有正偶数按如图方式进行排列,则2 016位于(  )
A.第30行B.第31行C.第32行D.第33行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,某舞台的两侧各有一块同样的扇形区域.圆心角∠AOB=90°,OA=4米,在圆弧$\widehat{AB}$上有一点C,作CD⊥OB于点D.设∠OAC=θ(rad),f(θ)=AC+CD.
(1)求函数f(θ)的解析式;
(2)若折线ACD是某表演路线的一部分,为优化观赏效果,要使折线ACD最长,问点D应设计在何处?.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M和N间的关系为M∩N=M,那么下列必定成立的是(  )
A.UN∩M=∅B.UM∩N=∅C.UM∩∁UN=∅D.UM∪∁UN=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过抛物线y2=4x的焦点F的直线交该抛物线于A,B(A在第一象限) 两点,O为坐标原点,若△AOB的面积为$2\sqrt{2}$,则$\frac{{|{AF}|}}{{|{BF}|}}$的值为(  )
A.$2±\sqrt{2}$B.$3±2\sqrt{2}$C.$4±2\sqrt{3}$D.$4±2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=b•ax(a>0,a≠1,b∈R)的图象经过点A(1,$\frac{1}{2}$),B(3,2)
(1)试确定f(x)的解析式;
(2)记集合E={y|y=bx-($\frac{1}{a}$)x+1,x∈[-3,2]},λ=($\frac{1}{10}$)0+${8^{-\frac{2}{3}}}$+$\root{3}{{{{(-\frac{3}{4})}^3}}}$,判断λ与E的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知奇函数f(x)对任意x∈R都有f(x+2)=-f(x),当x∈(0,1]时,f(x)=2x,则f(2016)-f(2015)的值为2.

查看答案和解析>>

同步练习册答案