精英家教网 > 高中数学 > 题目详情
9.若复数z满足(1+3i)z=i-3,则z等于(  )
A.iB.$\frac{4-3i}{5}$C.-iD.$\frac{5}{2}i$

分析 由(1+3i)z=i-3,得$z=\frac{i-3}{1+3i}$,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由(1+3i)z=i-3,
得$z=\frac{i-3}{1+3i}$=$\frac{(i-3)(1-3i)}{(1+3i)(1-3i)}=\frac{10i}{10}=i$,
故选:A.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.双曲线与椭圆有共同的焦点F1(-5,0),F2(5,0),点P(4,3)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,BC=x,AC=2,B=$\frac{π}{4}$,若满足该条件的△ABC有两解,则x的取值范围是(  )
A.(2,+∞)B.(0,2)C.?$(2,2\sqrt{2})$D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直角三角形ABC中,∠B=90°,$AB=\frac{1}{2}AC=1$,点M,N分别在边AB和AC上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△A'MN,使顶点A'落在边BC上(A'点和B点不重合).设∠ANM=θ
(1)用θ表示线段AM的长度,并写出θ的取值范围;
(2)求线段A'N长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=5,则V的最大值是(  )
A.B.$\frac{9π}{2}$C.$\frac{125π}{6}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线y2=2px(p>0),过点K(-4,0)作抛物线的两条切线KA,KB,A,B为切点,若AB过抛物线的焦点,△KAB的面积为24,则p的值是(  )
A.12B.-12C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x+1)的图象关于x=-1对称,当x≥0时,f(x)=3-x,f(2)-f(2x-1)<0的解为(-$\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,则$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角等于150°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={(x,y)|y=$\sqrt{25-{x}^{2}}$,y≠0},N={(x,y)|y=-x+b},若M∩N≠∅,则实数b的取值范围是(  )
A.(-5,5$\sqrt{2}$]B.[-5$\sqrt{2}$,5$\sqrt{2}$]C.[-5,5]D.[-5$\sqrt{2}$,5)

查看答案和解析>>

同步练习册答案