精英家教网 > 高中数学 > 题目详情
将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,则复数P1+P2i所对应的点P与直线l2:x+2y=2的位置关系(  )
A、P在直线l2的右下方B、P在直线l2的右上方C、P在直线l2D、P在直线l2的左下方
分析:据两直线相交斜率不等,求出a,b满足的条件,据古典概型概率公式求出P1,P2,据复数的集合意义求出点P坐标,判断出与直线的关系.
解答:解:易知当且仅当
a
b
1
2
时两条直线只有一个交点,
a
b
=
1
2
的情况有三种:a=1,b=2(此时两直线重合);a=2,b=4(此时两直线平行);a=3,b=6(此时两直线平行).
而投掷两次的所有情况有6×6=36种,
所以两条直线相交的概率P2=1-
3
36
=
11
12

两条直线平行的概率为P1=
2
36
=
1
18

P1+P2i所对应的点为P(
1
18
11
12
)

易判断P(
1
18
11
12
)
在l2:x+2y=2的左下方,
故选项为D.
点评:本题融合了直线、线性规划、概率及复数等有关知识,在处理方法上可采用枚举法处理,注意不等忽视了直线重合这种情况,否则会选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线?1:ax+by=2,?2:x+2y=2,?1与?2平行的概率为p_1,相交的概率为p2,则p2-p1的大小为(  )
A、
31
36
B、
5
6
C、-
5
6
D、-
31
36

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2,l2:x+2y=2,l1与l2平行的概率是P1,相交的概率为P2,则P2-P1的大小为(  )
A、
31
36
B、
5
6
C、-
5
6
D、-
31
36

查看答案和解析>>

科目:高中数学 来源: 题型:

记事件A=“直线ax-by=0与圆(x-2)2+y2=1相交”.
(Ⅰ)若将一颗骰子投掷两次得到的点数分别为a、b,求事件A发生的概率;
(Ⅱ)若实数a、b满足(a-2)2+(b-
3
)2<1
,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州一模)将一颗骰子投掷两次分别得到点数a,b,则直线ax-by=0与圆(x-2)2+y2=2相交的概率为
11
36
11
36

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)若实数x,y满足约束件
x+y-1≤0
x-y+1≥0
y+1≥0
将一颗骰子投掷两次得到的点数分别为a,b,则函数z=2ax+by在点(2,-1)处取得最大值的概率为
5
6
5
6

查看答案和解析>>

同步练习册答案