精英家教网 > 高中数学 > 题目详情

已知向量为常数且),函数上的最大值为
(1)求实数的值;
(2)把函数的图象向右平移个单位,可得函数的图象,若上为增函数,求取最大值时的单调增区间.

(1);(2)

解析试题分析:(1)把向量为常数且),代入函数整理,利用两角和的正弦函数化为,根据最值求实数的值;(2)由题意把函数的图象向右平移个单位,可得函数的图象,利用上为增函数,就是周期,求得的最大值,从而求出单调增区间.
试题解析:(1)
因为函数上的最大值为,所以,故
(2)由(1)知:
把函数的图象向右平移个单位,
可得函数
上为增函数的周期,所以的最大值为
此时单调增区间为
考点:1、平面向量数量积的运算;2、三角恒等变换;3、三角函数的最值;4、三角函数的单调性;5、函数的图象变换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调递增区间;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)化简
(2)若是第三象限角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为,最小值为.
(1)求的值;
(2)已知函数,当时求自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图像如图所示.

(1)求函数f(x)的解析式,并写出f(x)的单调减区间;
(2)的内角分别是A,B,C.若f(A)=1,,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的值及函数的单调递增区间;
(2)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知均为锐角,且
(1)求的值;(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=sin2ωx+2sinωx·cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(,0),求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角θ所在的象限;

查看答案和解析>>

同步练习册答案