精英家教网 > 高中数学 > 题目详情
19.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥各个侧面中,最大的侧面面积为(  )
A.2B.$\sqrt{5}$C.3D.4

分析 根据三视图得出空间几何体是镶嵌在正方体中的四棱锥O-ABCD,正方体的棱长为2,A,D为棱的中点,即可得出结论.

解答 解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O-ABCD,正方体的棱长为2,A,D为棱的中点,最大的侧面面积为S△OADB3
故选C.

点评 本题综合考查了空间几何体的性质,学生的空间思维能力,构造思想,关键是镶嵌在常见的几何体中解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设复数z满足|z-3-4i|=1,其中i为虚数单位,则|z|的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}为等差数列,且a3=5,a5=9,数列{bn}的前n项和Sn=$\frac{2}{3}$bn+$\frac{1}{3}$.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=an|bn|,求数列{cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an,数列{bn}中,bn=2${\;}^{{a}_{n}+1}$.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{$\frac{1}{{a}_{n}•(lo{g}_{2}{b}_{n})}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设E,F分别是正方形ABCD的边AB,BC上的点,且$AE=\frac{1}{2}AB$,$BF=\frac{2}{3}BC$,如果$\overrightarrow{EF}=m\overrightarrow{AB}+n\overrightarrow{AC}$(m,n为实数),那么m+n的值为(  )
A.$-\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,四边形ABCD中AC⊥BD,CE=2AE=2BE=2DE=2,将四边形ABCD沿着BD折叠,得到图2所示的三棱锥A-BCD,其中AB⊥CD.
(Ⅰ)证明:平面ACD⊥平面BAD;
(Ⅱ)若F为CD中点,求二面角C-AB-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R
(1)讨论函数f(x)极值点的个数,并说明理由;
(2)若任意x∈(0,+∞),f(x)>0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设△ABC的三内角A、B、C的对边分别是a、b、c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0
(Ⅰ)求角A的大小;
(Ⅱ)若a=$\sqrt{3}$,sinC=$\frac{{1+\sqrt{3}}}{2}$sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,△AB1C1,△B1B2C2,△B2B3C3是三个边长为2的等边三角形,且有一条边在同一直线上,边B3C3上有5个不同的点P1,P2,P3,P4,P5,设${m_i}=\overrightarrow{A{C_2}}•\overrightarrow{A{P_i}}$(i=1,2,…,5),则m1+m2+…+m5=90.

查看答案和解析>>

同步练习册答案