【题目】已知中心为原点O,焦点在x轴上的椭圆C的离心率为,且椭圆C的长轴是圆的一条直径.
(1)求椭圆C的方程;
(2)若不过原点的直线l与椭圆C交于A,B两点,与圆M交于P、Q两点,且直线OA,AB,OB的斜率成等比数列,求的取值范围.
【答案】(1)(2)
【解析】
(1)根据椭圆的离心率公式,列方程,再由椭圆长轴是圆的直径,判断,即可求解;
(2)根据题意,设直线方程,将直线方程与椭圆方程联立,消元得到关于的一元二次方程,使判别式,列出,由直线OA,AB,OB的斜率成等比数列,列出方程,再代入,化简求解参数值,再根据直线与圆相交利用几何法求解弦长,并根据判别式,求解参数范围,代入,即可求取值范围.
(1)设椭圆方程为,
由已知,得,
由椭圆C的长轴是圆的一条直径,得,则.
得椭圆方程为.
(2)设,
联立方程,得,
,
设,,则,(*)
因为直线OA、AB、OB的斜率成等比数列,得
,将(*)式代入,得
,因为,则,得,
由OA、OB的斜率存在,及,得
,得,且,
设原点O到直线l的距离为d,则,
,因为,且,
故.
科目:高中数学 来源: 题型:
【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望.
附:,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为,上顶点为.已知椭圆的离心率为,.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线:与椭圆交于,两点,且点在第二象限.与延长线交于点,若的面积是面积的3倍,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是由非负整数组成的无穷数列,对每一个正整数,该数列前项的最大值记为,第项之后各项的最小值记为,记.
(1)若数列的通项公式为,求数列的通项公式;
(2)证明:“数列单调递增”是“”的充要条件;
(3)若对任意恒成立,证明:数列的通项公式为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数与的和表示等.从这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知倾斜角为的直线过点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,直线与曲线分别交于、两点.
(1)写出直线的参数方程和曲线的直角坐标方程;
(2)若,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com