精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1).
(1)求以线段AB,AC为邻边的平行四边形的两条对角线的长;
(2)在直线OC上是否存在一点P,使(
AB
-
OP
)•
OC
=0
?若存在求出P点坐标,若不存在请说明理由.
分析:(1)以线段AB,AC为邻边的平行四边形的两条对角线对应的向量为
AB
+
AC
AB
-
AC
,求出坐标后,代入向量模的计算公式,可得答案.
(2)由
OC
=(-2,-1),P点在直线OC上,故可设
OP
=(2t,t),进而根据(
AB
-
OP
)•
OC
=0
,可得t值,进而得到P点坐标.
解答:解:(1)∵点A(-1,-2),B(2,3),C(-2,-1).
AB
=(3,5),
AC
=(-1,1)

AD
=
AB
+
AC
=(2,6),
CB
=
AB
-
AC
=(4,4)
|
AD
|=
22+62
=2
10
,|
CB
|=
42+42
=4
2

即以线段AB,AC为邻边的平行四边形的两条对角线的长分别为4
2
2
10

(2)存在P(
22
5
11
5
)
满足条件,理由如下:
OC
=(-2,-1),故可设
OP
=(2t,t)
AB
-
OP
=(3-2t,5-t)
(
AB
-
OP
)•
OC
=(3-2t)×(-2)+(5-t)×(-1)=5t-11=0
解得t=
11
5

故P点坐标为P(
22
5
11
5
)
点评:本题考查的知识点是平面向量加法的平行四边形法则,平面向量的模,平面向量数量积运算,是平面向量的综合应用,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案