精英家教网 > 高中数学 > 题目详情
1.已知集合A={x|2≤2x≤16},B={x|log${\;}_{\frac{1}{3}}$x<-1}.
(1)求A∩B,∁RB∪A;
(2)已知集合C={x|a+1<x<2a-1},若A∩C=C,求实数a的取值范围.

分析 (1)求解指数不等式和对数不等式化简集合A,B,然后直接利用交集补集并集运算求解;
(2)由A∩C=C,结合两集合端点值间的关系得不等式组求解.

解答 解:(1)∵A={x|2≤2x≤16}={x|1≤x≤4}=[1,4],
B={x|log${\;}_{\frac{1}{3}}$x<-1}={x|x>3}=(3,+∞),
∴A∩B=(3,4],
∴∁RB=(-∞,3],
∴∁RB∪A=(-∞,4],
(2)∵A∩C=C,
∴C⊆A,
当C=∅时,由a+1≥2a-1,解的a≤2,
当C≠∅时,由1≤a+1<2a-1≤4,解的2≤a≤$\frac{5}{2}$,
综上所述a的取值范围为(-∞,$\frac{5}{2}$].

点评 本题考查了交、并、补集的混合运算,考查了指数不等式和对数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图:在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC.四边形BB1C1C为正方形,设AB1的中点为D,B1C∩BC1=E.求证
(1)DE∥平面AA1C1C
(2)BC1⊥平面AB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-1|+|x-2|(x∈R).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;q:函数y=(m2-3)x是增函数,若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得(x-2)f(x)<0的x的取值范围是(  )
A.(-∞,-2)B.(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设定义在R上的函数f(x)=$\left\{\begin{array}{l}{2(x=0)}\\{lo{g}_{3}|x|(x≠0)}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+c=0恰有3个不同的实数解,则bc=(  )
A.-9B.9C.-16D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,b=$\sqrt{2}$,B=45°,则角A=(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知tanA=$\frac{1}{2}$,tanB=$\frac{1}{3}$,且最长边的长为1,则△ABC最短边的长为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简求值:
(Ⅰ)${0.064^{-\frac{1}{3}}}-{({-\frac{1}{8}})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}$;
(Ⅱ)$\frac{1}{2}lg25+lg2-lg\sqrt{0.1}-{log_2}9×{log_3}2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,AB∥CD,AC⊥BD,AC与BD交于点O,且平面PAC⊥底面ABCD,E为棱PA上一点.
(1)求证:BD⊥OE;
(2)若AB=2CD,AE=2EP,求证:EO∥平面PBC.

查看答案和解析>>

同步练习册答案