精英家教网 > 高中数学 > 题目详情
3.圆A:(x+2)2+(y+1)2=4与圆B:(x-1)2+(y-3)2=9的位置关系是(  )
A.相交B.相离C.相切D.内含

分析 由已知两元店方程得到圆心和半径,计算圆心的距离,与两个圆的半径和或者差比较,得到两个圆的位置关系.

解答 解:由已知圆A的圆心为(-2,-1),半径为2,圆B的圆心为(1,3),半径为3,
所以两个圆的圆心距为$\sqrt{(1+2)^{2}+(3+1)^{2}}=\sqrt{25}$=5=2+3;
所以两个圆外切;
故选:C.

点评 本题考查了由已知两个圆的方程判断它们的位置关系;如果两个圆的圆心距等于两个圆的半径和,那么这两个圆外切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如果函数f(x)=ax2-3x+4在区间(-∞,6)上单调递减,则实数a的取值范围是[0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=$\frac{{i+{i^2}+{i^3}+{i^4}+…+{i^9}}}{1+i}$,(i为虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若定义在区间D上的函数f(x)对于D上的n个值x1,x2,…xn,总满足:$\frac{1}{n}$[f(x1)+f(x2)+…+f(xn)]≤f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$),称函数f(x)为D上的凸函数.现已知f(x)=sinx在(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值是$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1时有极值0.
(1)求常数 a,b的值;
(2)方程f(x)=c在区间[-4,0]上有三个不同的实根时,求实数c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(cosx,-$\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}$sinx,cos2x),x∈R,设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ) 求f(x)的最小正周期;
(Ⅱ) 求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直角坐标平面内的两个向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m-1,m+3),使得平面内的任意一个向量$\overrightarrow{c}$都可以唯一分解成$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,则m的取值范围{m|m≠5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算:C32+C42+C52+…+C112=219(结果用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在等腰△ABC中,AB=AC=1,∠A=120°,则向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$上的投影等于(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案