精英家教网 > 高中数学 > 题目详情

【题目】已知在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且a2=b(b+c).
(1)求证:∠A=2∠B;
(2)若a= b,判断△ABC的形状.

【答案】
(1)证明:a2=b(b+c),

即BC2=AC(AC+AB),

延长CA至D,使AD=AB,连接DB.

则∠BAC=2∠D.

∴BC2=ACCD,

又∠C=∠C,

∴△BCA∽△DCB,故∠D=∠ABC.

∴∠BAC=2∠ABC


(2)解:∵a= b,

∴a2=3b2

又a2=b(b+c),

∴3b2=b2+bc,c=2b.

∴a2+b2=4b2

c2=(2b)2=4b2

即a2+b2=c2

△ABC为直角三角形


【解析】(1)延长CA至D,使AD=AB,连接DB.根据a2=b(b+c)得到△BCA∽△DCB,然后由三角形中角的关系得答案;(2)由a= b结合a2=b(b+c)得到a2+b2=c2 , 说明△ABC为直角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5 不等式选讲

已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海中一小岛的周围 内有暗礁,海轮由西向东航行至处测得小岛位于北偏东,航行8后,于处测得小岛在北偏东(如图所示).

1)如果这艘海轮不改变航向,有没有触礁的危险?请说明理由.

2)如果有触礁的危险,这艘海轮在处改变航向为东偏南方向航行,求的最小值.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+xlnx(a∈R)
(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;
(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosα﹣ ,﹣1), =(sinα,1), 为共线向量,且α∈[﹣ ,0].
(1)求sinα+cosα的值;
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数)

为极点, 轴为正半轴为极轴建立极坐标系,曲线的极坐标方程为,若直线与曲线交于 两点。

(Ⅰ)若,求

(Ⅱ)若点是曲线上不同于 的动点,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第n年需要付出设备的维修和工人工资等费用an的信息如图.

(1)求an
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)设,当时,若对任意,当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过定点P(2,0)的直线l与曲线y= 相交于A,B两点,O为坐标原点,当△AOB的面积取最大时,直线的倾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正确答案的序号是 . (写出所有正确答案的序号)

查看答案和解析>>

同步练习册答案