精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体的棱长为1,线段上有两个动点,且,则下列结论中错误的是(

A.B.平面ABCD

C.三棱锥的体积为定值D.的面积与的面积相等

【答案】AD

【解析】

通过特殊化,点F与点重合可判定A错误;正方体的两个底面平行,判定B正确,三角形BEF的面积是定值,A点到面距离是定值,可判定C正确,△AEF的面积与△BEF的面积相等不正确,可判定D错误.

A.由题意及图形知,当点F与点重合时,故选项A错误;

B平面ABCD,由正方体的两个底面平行,

平面,故有平面ABCD,此命题正确,不是正确选项;

C.三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确,不是正确选项;

D.由图形可以看出,B到线段EF的距离与AEF的距离不相等,故△AEF的面积与△BEF的面积相等不正确,故D是错误的.

故选:AD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。

  1. 求椭圆的方程;
  2. 设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在的奇函数满足:①;②对任意均有;③对任意,均有.

1)求的值;

2)利用定义法证明上单调递减;

3)若对任意,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知则关于的方程给出下列五个命题①存在实数使得该方程没有实根

②存在实数使得该方程恰有个实根

③存在实数使得该方程恰有个不同实根

④存在实数使得该方程恰有个不同实根

⑤存在实数使得该方程恰有个不同实根

其中正确的命题的个数是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在黄陵中学举行的数学知识竞赛中,将高二两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.

(1)求第二小组的频率;

(2)求这两个班参赛的学生人数是多少?

(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在人群流量较大的街道,有一中年人吆喝送钱,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.

1)摸出的3个球为白球的概率是多少?

2)摸出的3个球为2个黄球1个白球的概率是多少?

3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下表为函数部分自変量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.

0.61

-0.59

-0.56

-0.35

0

0.26

0.42

1.57

3.27

0.07

0.02

-0.03

-0.22

0

0.21

0.20

-10.04

-101.63

据表中数据,研究该函数的一些性质;

(1)判断函数的奇偶性,并证明;

(2)判断函数在区间[0.55,0.6]上是否存在零点,并说明理由;

(3)判断的正负,并证明函数上是单调递减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的最大值;

(2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别是,且.

1)求角的大小;

2)已知等差数列的公差不为零,若,且成等比数列,求数列的前项和.

查看答案和解析>>

同步练习册答案