【题目】各项为正的数列{an}满足 ,
(1)当λ=an+1时,求证:数列{an}是等比数列,并求其公比;
(2)当λ=2时,令 ,记数列{bn}的前n项和为Sn , 数列{bn}的前n项之积为Tn , 求证:对任意正整数n,2n+1Tn+Sn为定值.
【答案】
(1)证明:当λ=an+1时,an+1= +an,an>0,
∴ = +1,
令 =q>0,则q= +1,化为q2﹣q﹣1=0,解得q= .
∴数列{an}是等比数列,其公比q= .
(2)当λ=2时,an+1= +an,∴2an+1=an(an+2),
∴ = .
∴Tn=b1b2b3…bn= … = = .
又bn= = = = ﹣ ,
∴Sn=b1+b2+b3+…+bn= ﹣ + +…+ ﹣ = ﹣ ,
∴2n+1Tn+Sn= + ﹣ = =2.
∴对任意正整数n,2n+1Tn+Sn为定值2.
【解析】(1)先递推式两边同时除以an,可得含有的方程,再令=q,可得含有q的方程,解方程可得q;(2)先化简整理可得bn=,再分别计算Tn和Sn,进而可证对任意正整数n,2n+1Tn+Sn为定值.
【考点精析】掌握数列的前n项和和数列的通项公式是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】如图,点P在正方体ABCD﹣A1B1C1D1的表面上运动,且P到直线BC与直线C1D1的距离相等,如果将正方体在平面内展开,那么动点P的轨迹在展开图中的形状是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1和F2为双曲线 ﹣ =1(a>0,b>0)的两个焦点,若F1 , F2 , P(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是( )
A.y=± x
B.y=± x
C.y=± x
D.y=± x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an﹣2;数列{bn}的前n项和为Tn , 且满足b1=1,b2=2, .
(1)求数列{an}、{bn}的通项公式;
(2)是否存在正整数n,使得 恰为数列{bn}中的一项?若存在,求所有满足要求的bn;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,已知∠A= ,∠B= ,AB=6.在AB边上取点E使得BE=1,连结EC,ED,若∠CED= ,EC= .则CD= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于n维向量A=(a1 , a2 , …,an),若对任意i∈{1,2,…,n}均有ai=0或ai=1,则称A为n维T向量.对于两个n维T向量A,B,定义 .
(1)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.
(2)现有一个5维T向量序列:A1 , A2 , A3…,若A1=(1,1,1,1,1)且满足:d(Ai , Ai+1)=2,i∈N* . 求证:该序列中不存在5维T向量(0,0,0,0,0).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b是正实数,设函数f(x)=xlnx,g(x)=﹣a+xlnb.
(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;
(Ⅱ)若存在x0 , 使x0∈[ , ]且f(x0)≤g(x0)成立,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 =1(a>b>0)经过点( ,﹣ ),且椭圆的离心率e= .
(1)求椭圆的方程;
(2)过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,C及B,D,设线段AC,BD的中点分别为P,Q.求证:直线PQ恒过一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆G: +y2=1,与x轴不重合的直线l经过左焦点F1 , 且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点.
(1)若直线l的斜率为1,求直线OM的斜率;
(2)是否存在直线l,使得|AM|2=|CM||DM|成立?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com