【题目】设函数f(x)= (a>b>0)的图象是曲线C.
(1)在如图的坐标系中分别做出曲线C的示意图,并分别标出曲线C与x轴的左、右交点A1 , A2 .
(2)设P是曲线C上位于第一象限的任意一点,过A2作A2R⊥A1P于R,设A2R与曲线C交于Q,求直线PQ斜率的取值范围.
【答案】
(1)解:∵f(x)= (a>b>0),
∴y= ,
∴a2y2=b2(a2﹣x2),∴b2x2+a2y2=b2a2,
∴ =1,a>b>0,且y≥0,
其图象表示焦点在x轴上椭圆的一部分,
如图所示,A1 (﹣a,0)、A2(a,0)
(2)解:曲线C的方程是 =1(a>b>0,y≥0),
设 直线A1P的斜率是k,
因为P是曲线C上位于第一象限内的任意一点,所以k∈(0, ).
设P,Q的坐标分别是(x1,y1),(x2,y2),则直线A1P的方程是y=k(x+a),
由 消去y得,(a2k2+b2)x2+2a3k2x+a2(a2k2﹣b2)=0,
解得x1= ,y1= .
将上式中的a换成﹣a,k换成﹣ 得x2= ,y2= ,
∴KPQ= = (k﹣ ),由于y= (k﹣ )在∈(0, )上单调递增,
∴KPQ= = (k﹣ )< ( ﹣ )= ,
故直线PQ斜率的取值范围为(﹣∞, ).
【解析】(1)化简函数的解析式为 =1,a>b>0,且y≥0,其图象表示焦点在x轴上椭圆的一部分,数形结合求得,A1 和A2的坐标.(2)先考察一般性,直线A1P的方程是y=k(x+a),与椭圆方程联立,求得P,Q的坐标,可得直线PQ斜率,即可求出取值范围.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求数列{an}的通项公式an;
(2)令 ,写出Tn关于n的表达式,并求满足Tn> 时n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人在连续7天的定点投篮的分数统计如下:在上述统计数据的分析中,一部分计算如右图所示的算法流程图(其中 是这7个数据的平均数),则输出的S的值是( )
观测次数i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
观测数据ai | 5 | 6 | 8 | 6 | 8 | 8 | 8 |
A.1
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1;
(Ⅱ)若CD= a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列A:a1,a2,a3,…,定义A的“差数列” A:,…
(I)若数列A:a1,a2,a3,…的通项公式,写出A的前3项;
(II)试给出一个数列A:a1,a2,a3,…,使得A是等差数列;
(III)若数列A:a1,a2,a3,…的差数列的差数列 (A)的所有项都等于1,且==0,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示).则分数在[70,80)内的人数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2lnx﹣ ﹣m,若关于x的方程f(f(x))=x恰有两个不相等的实数根,则m的取值范围是( )
A.(2ln3﹣4,+∞)
B.(﹣∞,2ln3﹣4)
C.(﹣4,+∞)
D.(﹣∞,﹣4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com