精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= (a>b>0)的图象是曲线C.

(1)在如图的坐标系中分别做出曲线C的示意图,并分别标出曲线C与x轴的左、右交点A1 , A2
(2)设P是曲线C上位于第一象限的任意一点,过A2作A2R⊥A1P于R,设A2R与曲线C交于Q,求直线PQ斜率的取值范围.

【答案】
(1)解:∵f(x)= (a>b>0),

∴y=

∴a2y2=b2(a2﹣x2),∴b2x2+a2y2=b2a2

=1,a>b>0,且y≥0,

其图象表示焦点在x轴上椭圆的一部分,

如图所示,A1 (﹣a,0)、A2(a,0)


(2)解:曲线C的方程是 =1(a>b>0,y≥0),

设 直线A1P的斜率是k,

因为P是曲线C上位于第一象限内的任意一点,所以k∈(0, ).

设P,Q的坐标分别是(x1,y1),(x2,y2),则直线A1P的方程是y=k(x+a),

消去y得,(a2k2+b2)x2+2a3k2x+a2(a2k2﹣b2)=0,

解得x1= ,y1=

将上式中的a换成﹣a,k换成﹣ 得x2= ,y2=

∴KPQ= = (k﹣ ),由于y= (k﹣ )在∈(0, )上单调递增,

∴KPQ= = (k﹣ )< )=

故直线PQ斜率的取值范围为(﹣∞, ).


【解析】(1)化简函数的解析式为 =1,a>b>0,且y≥0,其图象表示焦点在x轴上椭圆的一部分,数形结合求得,A1 和A2的坐标.(2)先考察一般性,直线A1P的方程是y=k(x+a),与椭圆方程联立,求得P,Q的坐标,可得直线PQ斜率,即可求出取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,命题,不等式恒成立;命题,不等式恒成立.

(1)若命题为真命题,求实数的取值范围;

(2)若为假,为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求数列{an}的通项公式an
(2)令 ,写出Tn关于n的表达式,并求满足Tn 时n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人在连续7天的定点投篮的分数统计如下:在上述统计数据的分析中,一部分计算如右图所示的算法流程图(其中 是这7个数据的平均数),则输出的S的值是(

观测次数i

1

2

3

4

5

6

7

观测数据ai

5

6

8

6

8

8

8


A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1
(Ⅱ)若CD= a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列A:a1a2a3,…,定义A的“差数列” A:,…

(I)若数列A:a1a2a3,…的通项公式,写出A的前3项;

(II)试给出一个数列A:a1a2a3,…,使得A是等差数列;

(III)若数列A:a1a2a3,…的差数列的差数列 A)的所有项都等于1,且==0,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示).则分数在[70,80)内的人数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2lnx﹣ ﹣m,若关于x的方程f(f(x))=x恰有两个不相等的实数根,则m的取值范围是(
A.(2ln3﹣4,+∞)
B.(﹣∞,2ln3﹣4)
C.(﹣4,+∞)
D.(﹣∞,﹣4)

查看答案和解析>>

同步练习册答案