精英家教网 > 高中数学 > 题目详情
20.某质点的位移函数是s(t)=2t3-$\frac{1}{2}$gt2(g=10m/s2),则当t=3s时,它的速度是24m/s.

分析 根据导数在物理学上的意义,位移的导数是速度,速度的导数是加速度,求导后求出t=3s秒时的速度.

解答 解:∵路程函数s(t)=2t3-$\frac{1}{2}$gt2=2t3-$\frac{1}{2}$×10t2=2t3-5t2
∴速度函数为v(t)=s′(t)=6t2-10t,
∴v(3)=s′(3)=54-30=24
故答案为:24m/s

点评 本题考查了导数在物理学上的应用问题,即位移的导数是速度,速度的导数是加速度,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在半径为6cm的圆中,某扇形的弧所对的圆心角为$\frac{π}{4}$,则该扇形的周长是$12+\frac{3π}{2}$cm,该扇形的面积是$\frac{9π}{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z1,z2在复平面内的对应点关于实轴对称,z1=2-i,则z1•z2=(  )
A.-5B.5C.-4+iD.-4-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(cosx,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(sinx,cos2x),x∈R,设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(I)求f(x)的最小正周期:
(Ⅱ)若x∈(0,$\frac{π}{2}$),求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,短轴的一个端点为P,直线l:x+2y=0与椭圆E的一个交点为A,若|AF1|+|AF2|=10,点P到直线l的距离不大于$\frac{2\sqrt{5}}{5}$,则椭圆E的离心率的取值范围是(  )
A.(0,$\frac{2\sqrt{6}}{5}$]B.[$\frac{\sqrt{3}}{2}$,1)C.[$\frac{2\sqrt{6}}{5}$,1)D.(0,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+2$\overrightarrow{b}$-2$\overrightarrow{c}$,$\overrightarrow{BC}$=3$\overrightarrow{a}$-3$\overrightarrow{b}$+3$\overrightarrow{c}$,$\overrightarrow{CD}$=$\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$,则直线AD与BC(  )
A.平行B.相交C.重合D.平行或重合

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=\root{3}{x}-\frac{1}{x^2}$ 的零点是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的两个焦点为F1、F2,点A在双曲线第一象限的图象上,若△AF1F2的面积为1,且tan∠AF1F2=$\frac{1}{2}$,tan∠AF2F1=-2,则双曲线方程为$\frac{{12{x^2}}}{5}-3{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosx,-1),$\overrightarrow{n}$=(sinx,cos2x),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$.若x∈[0,$\frac{π}{4}$],f(x)=$\frac{\sqrt{3}}{3}$,求cos2x的值.

查看答案和解析>>

同步练习册答案