精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{ax+b,x≤0}\\{lo{g}_{c}(x+\frac{1}{9}),x>0}\end{array}\right.$的图象如图所示,则a+b+c=(  )
A.$\frac{10}{3}$B.$\frac{13}{3}$C.3D.$\frac{9}{10}$

分析 先由图象可求得直线的方程,又函数的图象过点(0,2),将其坐标代入可得c值,从而即可求得a+b+c的值.

解答 解:由图象可求得直线的方程为y=2x+2,
又函数y=logc(x+$\frac{1}{9}$)的图象过点(0,2),
将其坐标代入可得c=$\frac{1}{3}$,
所以a+b+c=2+2+$\frac{1}{3}$=$\frac{13}{3}$.
故选:B

点评 本题考查了函数图象的识别和应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.为了了解某校学生喜欢吃辣是否与性别有关,随机对此校100人进行调查,得到如下的列表:已知在全部100人中随机抽取1人抽到喜欢吃辣的学生的概率为$\frac{3}{5}$.
喜欢吃辣不喜欢吃辣合计
男生401050
女生203050
合计6040100
(1)请将上面的列表补充完整;
(2)是否有99.9%以上的把握认为喜欢吃辣与性别有关?说明理由:
下面的临界值表供参考:
p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n•{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题中为真命题的是(  )
A.命题“若$\overrightarrow{a}$∥$\overrightarrow{c}$且$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{b}$”
B.命题“若x>2015,则x>0”的逆命题
C.命题“若xy=0,则x=0或y=0”的否命题
D.命题“若x2≥1,则x≥1”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合M={-1,0,1},N={-2,-1,0,2},则M∩N=(  )
A.{0}B.{1,0}C.(-1,0)D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{7x+5}{x+1}$,数列{an}满足:2an+1-2an+an+1an=0且an≠0.数列{bn}中,b1=f(0)且bn=f(an-1).
(1)求数列{an}的通项公式;   
(2)求数列{anan+1}的前n项和Sn
(3)求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.三个数a=0.32,b=0.32.1,c=20.3的大小关系是(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.三棱锥SABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为(  )
A.4$\sqrt{2}$B.$\sqrt{19}$C.$\sqrt{20}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$和圆:${x^2}+{y^2}={(\frac{b}{2}+c)^2}({c^2}={a^2}-{b^2})$有四个不同的公共点,则椭圆的离心率的取值范围是(  )
A.$(\frac{{\sqrt{5}}}{5},\frac{3}{5})$B.$(\frac{{\sqrt{2}}}{5},\frac{{\sqrt{5}}}{5})$C.$(\frac{{\sqrt{2}}}{5},\frac{3}{5})$D.$(0,\frac{{\sqrt{5}}}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.根据下列条件,求双曲线的标准方程.
(1)与已知双曲线x2-4y2=4有共同渐近线且经过点(2,2);
(2)渐近线方程为y=±$\frac{1}{2}$x,焦距为10;
(3)经过两点P(-3,2$\sqrt{7}$)和Q(-6$\sqrt{2}$,-7);
(4)双曲线中心在原点,焦点在坐标轴上,离心率为$\sqrt{2}$,且过点(4,-$\sqrt{10}$).

查看答案和解析>>

同步练习册答案