精英家教网 > 高中数学 > 题目详情
18.若sinα=2cosα,函数f(x)=2x-tanα,则f(0)=-1.

分析 利用同角三角函数的基本关系求得tanα=2,可得f(x)的解析式,从而求得f(0)的值.

解答 解:若sinα=2cosα,则tanα=2,∴函数f(x)=2x-tanα=2x-2,
则f(0)=20-2=-1,
故答案为:-1.

点评 本题主要考查同角三角函数的基本关系,求函数的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知$sin(3π+θ)=\frac{1}{3}$,且θ是第二象限角,则tanθ=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=$\sqrt{-{x^2}+4x+2}$的值域是(  )
A.$(-∞,\sqrt{6}]$B.(-∞,2]C.$[{\sqrt{6},+∞})$D.[0,$\sqrt{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设曲线y=$\frac{x+1}{x-1}$在点(2,3)处的切线与直线ax+y+1=0垂直,则a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足(3+4i)z=|3-4i|,其中i为虚数单位,则z虚部为(  )
A.$-\frac{4}{5}$B.$-\frac{4}{5}i$C.$\frac{4}{5}$D.$\frac{4}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)={({\frac{1}{3}})^x}-{x^2}$,若f(x0)=m,x1∈(0,x0),x2∈(x0,+∞),则(  )
A.f(x1)≥m,f(x2)<mB.f(x1)<m,f(x2)>mC.f(x1)<m,f(x2)<mD.f(x1)>m,f(x2)>m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设△ABC的内角A、B、C的对边长分别为a,b,c,且ac=2b2
(Ⅰ)求证:$cosB≥\frac{3}{4}$;
(Ⅱ)若cos(A-C)+cosB=1,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C的顶点为坐标原点,焦点F(1,0),其准线与x轴的交点为K,过点K的直线l与C交于A,B两点,点A关于x轴的对称点为D.
(1)证明:点F在直线BD上;
(2)设$\overrightarrow{FA}$•$\overrightarrow{FB}$=$\frac{8}{9}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知长方体的长、宽、高分别为3,4,5,则体对角线长度为$5\sqrt{2}$.

查看答案和解析>>

同步练习册答案