精英家教网 > 高中数学 > 题目详情
18.设等差数列 {an} 的前 n 项和为 Sn,已知 ${({a}_{7}-1)}^{3}+2017({a}_{7}-1)=1$,${({a}_{2011}-1)}^{3}+2017({a}_{2011}-1)=-1$,则下列结论正确的是(  )
A.S2017=2017,a2011<a7B.S2017=2017,a2017>a7
C.S2012=-2017,a2017<a7D.S2017=-2017,a2017>a7

分析 根据等式,构造函数,求导函数,可知函数是单调递增的,再利用函数的单调性即等差数列的求和公式,即可得到结论.

解答 解:根据(a7-1)3+2017(a7-1)=1,(a2011-1)3+2017(a2011-1)=-1,
构造函数f(x)=x3+2017x,由于函数f(x)=x3+2017x是奇函数,
由条件有f(a7-1)=1,f(a2011-1)=-1.
求导函数可得:f′(x)=3x2+2017>0,所以函数f(x)=x3+2017x是单调递增的,
而f(1)=2018>1=f(a7-1),即a7-1<1,解得:a7<2.
∵f(a7-1)=1,f(a2011-1)=-1,∴a7-1>a2011-1,a7-1=-(a2011-1),
∴a7>0>a2011,a7+a2011=2,
由等差数列的性质可知:a1+a2017=a7+a2011=2
∴S2017=$\frac{({a}_{1}+{a}_{2017})×2017}{2}$=2017.
综上知,S2017=2017,且a2011<a7
故选A.

点评 本题考查函数与方程的思想,综合考查函数的奇偶性、单调性、等差数列的通项公式、等差数列性质、等差数列求和公式以及函数与方程的思想,转化与化归思想,属于难题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,过右焦点且垂直于x轴的直线被椭圆所截得的弦长为3.
(1)求椭圆C的方程;
(2)A,B两点分别为椭圆C的左右顶点,P为椭圆上异于A,B的一点,记直线PA,PB的斜率分别为kPA,kPB,求kPA•kPB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=x2-4ax+alnx(a∈R)
(1)讨论f(x)的极值点的个数
(2)若f(x)有两个不同的极值点x1,x2,证明:f(x1)+f(x2)<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,$\stackrel{→}{AB}$+$\stackrel{→}{BC}$=(  )
A.$\stackrel{→}{AC}$B.$\stackrel{→}{BD}$C.$\stackrel{→}{CA}$D.$\stackrel{→}{DB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{mx-6}{{{x^2}+n}}$的图象在点P(-1,f(-1))处的切线方程为x+2y+5=0,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2x+1定义在R上.
(1)若f(x)可以表示为一个偶函数g(x)与一个奇函数h(x)之和,设h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
(2)若p(t)≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f1(x)=sin x+cos x,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*,n≥2),则f1($\frac{π}{2}$)+f2($\frac{π}{2}$)+…+f2017($\frac{π}{2}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象关于直线$x=\frac{2π}{3}$对称,它的周期为π,则下列说法正确是③.(填写序号)
①f(x)的图象过点$({0,\frac{3}{2}})$;
②f(x)在$[{\frac{π}{12},\frac{2π}{3}}]$上单调递减;
③f(x)的一个对称中心是$({\frac{5π}{12},0})$;
④将f(x)的图象向右平移|φ|个单位长度得到函数y=2sinωx的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等比数列{an}中,a4a8=9,则a3+a9的取值范围是(  )
A.[6,+∞)B.(-∞,-6]∪[6,+∞)C.(6,+∞)D.(-6,6)

查看答案和解析>>

同步练习册答案