精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和满足,.数列的前项和为,则满足的最小的值为______

【答案】7

【解析】

根据题意,将Sn=3an﹣2变形可得Sn﹣1=3an﹣1﹣2,两式相减变形,并令n=1求出a1的值,即可得数列{an}是等比数列,求得数列{an}的通项公式,再由错位相减法求出Tn的值,利用Tn>100,验证分析可得n的最小值,即可得答案.

根据题意,数列{an}满足Sn=3an﹣2,①

n≥2时,有Sn﹣1=3an﹣1﹣2,②,

①﹣②可得:an=3an﹣3an﹣1,变形可得2an=3an﹣1

n=1时,有S1a1=3a1﹣2,解可得a1=1,

则数列{an}是以a1=1为首项,公比为的等比数列,则an=(n﹣1

数列{nan}的前n项和为Tn,则Tn=1+23×(2+……+n×(n﹣1,③

则有Tn2×(2+3×(3+……+n×(n,④

③﹣④可得:Tn=1+()+(2+……×(n﹣1n×(n=﹣2(1)﹣n×(n

变形可得:Tn=4+(2n﹣4)×(n

Tn>100,即4+(2n﹣4)×(n>100,

分析可得:n≥7,故满足Tn>100的最小的n值为7;

故答案为:7.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中取两个定点,再取两个动点,且.

(1)求直线的交点的轨迹的方程;

(2)的直线与轨迹交于两点,过点轴且与轨迹交于另一点为轨迹的右焦点,若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是边长为2的等边三角形,,当三棱锥体积最大时,其外接球的表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.

1)用样本估计总体,以频率作为概率,若在两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;

2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.

优质花苗

非优质花苗

合计

甲培育法

20

乙培育法

10

合计

附:下面的临界值表仅供参考.

0.050

0.010

0.001

3.841

6.635

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)设,若对任意,且,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上有2个零点,求实数的取值范围.(注

(2)设,若函数恰有两个不同的极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某北方村庄4个草莓基地,采用水培阳光栽培方式种植的草莓个大味美,一上市便成为消费者争相购买的对象.光照是影响草莓生长的关键因素,过去50年的资料显示,该村庄一年当中12个月份的月光照量X(小时)的频率分布直方图如下图所示(注:月光照量指的是当月阳光照射总时长).

1)求月光照量(小时)的平均数和中位数;

2)现准备按照月光照量来分层抽样,抽取一年中的4个月份来比较草莓的生长状况,问:应在月光照量的区间内各抽取多少个月份?

3)假设每年中最热的5678910月的月光照量是大于等于240小时,且678月的月光照量是大于等于320小时,那么,从该村庄2018年的56789106个月份之中随机抽取2个月份的月光照量进行调查,求抽取到的2个月份的月光照量(小时)都不低于320的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知mn是两条不同的直线,是两个不同的平面,给出下列命题:

,则

,则

,则

,则

其中正确命题的序号是(  )

A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为,直线过椭圆的左焦点.

1)求椭圆的标准方程;

2)若直线轴交于点是椭圆上的两个动点,的平分线在轴上,.试判断直线是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案