精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆和双曲线焦点F1 , F2相同,且离心率互为倒数,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,椭圆的离心率为( )
A.
B.
C.
D.

【答案】A
【解析】解:设F1P=m,F2P=n,F1F2=2c;
由余弦定理得,(2c)2=m2+n2﹣2mncos60°,即4c2=m2+n2﹣mn;
设a1是椭圆的长半轴,a2是双曲线的实半轴;
由椭圆及双曲线定义,得m+n=2a1 , m﹣n=2a2
∴m=a1+a2 , n=a1﹣a2 , 将它们代入前式得3a22﹣4c2+a12=0;
∵离心率互为倒数;
,∴c2=a1a2
(a2﹣a1)=0;
根据题意,a2≠a1 , ∴a1=3a2
∴e1e2=
即3e12=1;
∴e1=
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,若存在x1 , x2∈R,x1≠x2 , 使f(x1)=f(x2)成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法:
①垂直于同一平面的所有向量一定共面;
②在△ABC中,已知 ,则∠A=60°;
③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,则A=
④若a>0,b>0,a+b=2,则a2+b2≥2;
正确的序号有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F、G分别是AC、BC中点.
(1)求证:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是(
A.点P到平面QEF的距离
B.直线PQ与平面PEF所成的角
C.三棱锥P﹣QEF的体积
D.△QEF的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角坐标系x′Oy所在的平面为β,直角坐标系xOy所在的平面为α,且二面角α﹣y轴﹣β的大小等于30°.已知β内的曲线C′的方程是3(x﹣2 2+4y2﹣36=0,则曲线C′在α内的射影在坐标系xOy下的曲线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,点F1(﹣1,0),F2(1,0),动点M到点F2的距离是 ,线段MF1的中垂线交MF2于点P.

(1)当点M变化时,求动点P的轨迹G的方程;
(2)设直线l:y=kx+m与轨迹G交于M、N两点,直线F2M与F2N的倾斜角分别为α、β,且α+β=π,求证:直线l经过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn1(x)),则函数y=f2017(x)的图象与曲线 的交点坐标为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f(
C.f(0)>2f(
D.f(0)> f(

查看答案和解析>>

同步练习册答案