精英家教网 > 高中数学 > 题目详情
15.设不等式组$\left\{\begin{array}{l}{x>0}\\{y>0}\\{y≤3n-nx(n∈N*)}\end{array}\right.$所表示的平面区域Dn,记Dn内的整点个数为an,(整点即横坐标和纵坐标均为整数的点).
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,bk=${C}_{n}^{k}$ak(k=1,2,3,…,n),Tn=$\sum_{k=1}^{n}$bk,若对于一切正整数n,$\frac{n{S}_{n}}{{T}_{n}}$≤m恒成立,求实数m的取值范围.

分析 (1)不等式组$\left\{\begin{array}{l}{x>0}\\{y>0}\\{y≤3n-nx(n∈N*)}\end{array}\right.$所表示的平面区域Dn,记Dn内的整点:(1,1),(1,2),…,(1,2n),(2,1),(2,2),…,(2,n).即可得出.
(2)数列{an}的前n项和为Sn=$\frac{3n(n+1)}{2}$.bk=${C}_{n}^{k}$ak=$3k{∁}_{n}^{k}$=3n${∁}_{n-1}^{k-1}$,Tn=$\sum_{k=1}^{n}$bk=3$({∁}_{n}^{1}+2{∁}_{n}^{2}+…+n{∁}_{n}^{n})$=3n$({∁}_{n-1}^{0}+{∁}_{n-1}^{1}+…+{∁}_{n-1}^{n-1})$=3n2n-1
f(n)=$\frac{n{S}_{n}}{{T}_{n}}$=$\frac{n(n+1)}{{2}^{n}}$,对n讨论,即可得出最大值.

解答 解:(1)n=1时,$\left\{\begin{array}{l}{x>0,y>0}\\{y≤3-x}\end{array}\right.$,D1内的整点(1,1),(1,2),(2,1),总个数a1=3×1.
n=2时,$\left\{\begin{array}{l}{x>0,y>0}\\{y≤6-2x}\end{array}\right.$,D2内的整点(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),总个数a2=6=3×2.
…,
不等式组$\left\{\begin{array}{l}{x>0}\\{y>0}\\{y≤3n-nx(n∈N*)}\end{array}\right.$所表示的平面区域Dn,记Dn内的整点:(1,1),(1,2),…,(1,2n),(2,1),(2,2),…,(2,n).
总个数an=2n+n=3n.
∴an=3n.
(2)数列{an}的前n项和为Sn=$\frac{n(3+3n)}{2}$=$\frac{3n(n+1)}{2}$.
bk=${C}_{n}^{k}$ak=$3k{∁}_{n}^{k}$=3n${∁}_{n-1}^{k-1}$,
Tn=$\sum_{k=1}^{n}$bk=3$({∁}_{n}^{1}+2{∁}_{n}^{2}+…+n{∁}_{n}^{n})$=3n$({∁}_{n-1}^{0}+{∁}_{n-1}^{1}+…+{∁}_{n-1}^{n-1})$=3n2n-1
f(n)=$\frac{n{S}_{n}}{{T}_{n}}$=$\frac{\frac{3{n}^{2}(n+1)}{2}}{3n•{2}^{n-1}}$=$\frac{n(n+1)}{{2}^{n}}$,
当n=1时,21-1×(1+1)=0,f(1)=1;
当n=2时,22-2×(2+1)=-2<0,f(2)=$\frac{3}{2}$;
当n=3时,23-3×(3+1)=-4<0,f(3)=$\frac{3}{2}$;
当n=4时,24-4×(4+1)=-4<0,f(4)=$\frac{5}{4}$;
当n=5时,25-5×(5+1)=2>0,f(5)=$\frac{15}{16}$<1;
…,
当n≥5时,2n-n(n+1)>0,(利用二项式定理可证明),f(n)<1.
可得f(n)max=$\frac{3}{2}$
若对于一切正整数n,$\frac{n{S}_{n}}{{T}_{n}}$≤m恒成立,
∴m≥$\frac{3}{2}$.
∴实数m的取值范围是m≥$\frac{3}{2}$.

点评 本题考查了线性规划问题、等差数列的通项公式及其前n项和公式、组合数的性质、二项式定理的应用、恒成立问题,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设f(x)是定义在R上的增函数,且对于任意的x都有f(1-x)+f(1+x)=0恒成立,a,b满足不等式组$\left\{\begin{array}{l}{f({a}^{2}-6a+23)+f({b}^{2}-8b)≤0}\\{f(b+1)>f(5)}\end{array}\right.$,那么a2+b2的取值范围是(  )
A.(17,49]B.[9,49]C.(17,41]D.[9,41]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知幂函数f(x)=(n2+2n-2)${x}^{{n}^{2}-3n}$的图象关于直线x=0对称,且在(0,+∞)上是减函数,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若定义在R上的偶函数f(x)在区间(-∞,0]上单调递减,且f(2)=0,求使得f(x)<0的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知α∈($\frac{π}{2}$,π),且sin(α+$\frac{π}{4}$)=-$\frac{\sqrt{2}}{3}$.
(1)求sinα的值;
(2)求cos($\frac{5π}{12}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=$\sqrt{2-lo{g}_{2}x}$(0$<x<\frac{1}{4}$)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足2an+1=an+an+2,它的前n项和为Sn,且a3=10,S6=72.若bn=$\frac{1}{2}$an-30.
(1)求数列{bn}的前n项和Tn的最小值;
(2)求数列{|bn|}的前n项和Mn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai,若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.
(1)求你的幸运数字为3的概率;
(2)若k=1,则你的得分为6分;若k=2,则你的得分为4分;若k=3,则你的得分为2分;若抛掷三次还没找到你的幸运数字则记0分,求得分ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为$\frac{1}{2}$,它的一个顶点恰好是抛物线x=$\frac{1}{4}$y2的焦点.
(1)求椭圆C的标准方程;
(2)若AB为椭圆C的一条不垂直于x轴的弦,且过点(1,0).过A作关于x轴的对称点A’,证明直线A′B过x轴的定点.

查看答案和解析>>

同步练习册答案