【题目】已知.
(1)讨论的单调性;
(2)若存在及唯一正整数,使得,求的取值范围.
【答案】(1)的单调递减区间是,单调递增区间是;(2) 的取值范围是.
【解析】试题分析:
(1)求出函数的导函数,通过对导函数符号的讨论可得函数的单调性.(2)由题意得函数在上的值域为.结合题意可将问题转化为当时,满足的正整数解只有1个.通过讨论的单调性可得只需满足,由此可得所求范围.
试题解析:
(1)由题意知函数的定义域为.
因为,
所以,
令,则,
所以当时, 是增函数,
又,
故当时, 单调递减,
当时, 单调递增.
所以上单调递减,在上单调递增.
(2)由(1)知当时, 取得最小值,
又,
所以在上的值域为.
因为存在及唯一正整数,使得,
所以满足的正整数解只有1个.
因为,
所以,
所以在上单调递增,在上单调递减,
所以,即,
解得.
所以实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表:
表1:某年部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:11 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:50 | 12月20日 | 7:31 |
表2:某年1月部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记为这两人中观看升旗的时刻早于7:00的人数,求的 分布列和数学期望;
(3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为),记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断与的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是矩形,侧棱底面, 分别是的中点, , .
(Ⅰ)求证: 平面;
(Ⅱ)求与平面所成角的正弦值;
(Ⅲ)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.
(1)求他们选择的项目所属类别互不相同的概率;
(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列及均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且椭圆过点,直线过椭圆的右焦点且与椭圆交于两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点,求证:若圆与直线相切,则圆与直线也相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中曲线的方程是,点是上的动点,点满足(为极点),点的轨迹为曲线,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,已知直线的参数方程是,( 为参数).
(Ⅰ)求曲线直角坐标方程与直线的普通方程;
(Ⅱ)求点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)和y=g(x)在[-2,2]上的图象如图所示.给出下列四个命题:
①方程f[g(x)]=0有且仅有6个根;②方程g[f(x)]=0有且仅有3个根;
③方程f[f(x)]=0有且仅有7个根;④方程g[g(x)]=0有且仅有4个根.
其中正确命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列满足,其中,且, 为常数.
(1)若是等差数列,且公差,求的值;
(2)若,且存在,使得对任意的都成立,求的最小值;
(3)若,且数列不是常数列,如果存在正整数,使得对任意的均成立. 求所有满足条件的数列中的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,圆,以动点为圆心的圆经过点,且圆与圆内切.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)若直线过点,且与曲线交于两点,则在轴上是否存在一点,使得轴平分?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com