精英家教网 > 高中数学 > 题目详情
如图,在等腰直角中,,点在线段上.

(Ⅰ) 若,求的长;
(Ⅱ)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.
(Ⅰ) (Ⅱ)当时,的最大值为,此时的面积取到最小值.即2时,的面积的最小值为
(Ⅰ)在中,
由余弦定理得,

解得
(Ⅱ)设
中,由正弦定理,得
所以
同理








因为,所以当时,的最大值为,此时的面积取到最小值.即2时,的面积的最小值为
此题通过正余弦定理巧妙的将面积最值问题通过三角函数呈现,而三角函数的化简过程又比较复杂,但还是有规律可循的,比如差异分析.这就要在平时注意积累,而且计算基本功要硬.
【考点定位】 本题主要考查解三角形、同角三角函数的基本关系、两角和与差的三角函数等基础知识,考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思.计算难度比较大,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正方形中,为坐标原点,点的坐标为,点的坐标为,分别将线段十等分,分点分别记为,连接,过轴的垂线与交于点

(1)求证:点都在同一条抛物线上,并求抛物线的方程;
(2)过点作直线与抛物线E交于不同的两点, 若的面积之比为4:1,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线上一点轴的距离是,则点到该抛物线焦点的距离是____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,设点为圆上的任意一点,点(2)  (),则线段长度的最小值为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点的距离之和等于4.
(1)写出椭圆的方程和焦点坐标.
(2)过点的直线与椭圆交于两点,当的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知的顶点A在射线上,两点关于x轴对称,0为坐标原点,且线段AB上有一点M满足当点A在上移动时,记点M的轨迹为W.
(Ⅰ)求轨迹W的方程;
(Ⅱ)设是否存在过的直线与W相交于P,Q两点,使得若存在,
求出直线;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1,F2是椭圆  (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记 
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)求的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的左焦点为,过点的直线交椭圆于两点.当直线经过椭圆的一个顶点时,其倾斜角恰为

(Ⅰ)求该椭圆的离心率;
(Ⅱ)设线段的中点为的中垂线与轴和轴分别交于两点,
记△的面积为,△为原点)的面积为,求的取值范围.

查看答案和解析>>

同步练习册答案