精英家教网 > 高中数学 > 题目详情
已知△ABC为直角三角形,且∠ACB=90°,AB=8,点P是平面ABC外一点,若PA=PB=PC,且PO⊥平面ABC,O为垂足,则OC=______.
∵PA=PB=PC,且PO⊥平面ABC,
∴O是△ABC的外心,
∵△ABC为直角三角形,且∠ACB=90°
∴O是AB的中点,
∵AB=8,
∴OC=4.
故答案为:4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面平面ABCD
ABCD为正方形,是直角三角形,
E、F、G分别是
线段PAPDCD的中点.
(1)求证:∥面EFC
(2)求异面直线EGBD所成的角;
(3)在线段CD上是否存在一点Q
使得点A到面EFQ的距离为0.8. 若存在,
求出CQ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.
(I)求点P到平面ABCD的距离,
(II)求面APB与面CPB所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,PE⊥BD,E为垂足,则PE的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,P是正方形ABCD所在平面外一点,且PD⊥AD,PD⊥DC,PD=3,AD=2,若M、N分别是AB、PC的中点.
(1)求证:MN⊥DC;
(2)求点M到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知P是正方形ABCD所在平面外一点,点P在平面ABCD内的射影O是正方形的中心,PO=OD=a,E是PD的中点
(1)求证:PD⊥平面AEC
(2)求直线BP到平面AEC的距离
(3)求直线BC与平面AEC所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

二面角α-l-β为60°,A、B是棱l上的两点,AC、BD分别在半平面α、β内,
AC⊥l,BD⊥l,且AB=AC=a,BD=2a,则CD的长为(  )
A.2aB.
5
a
C.aD.
3
a

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=4,E为AD的中点,点P在线段C1E上,则点P到直线BB1的距离的最小值为(  )
A.2B.
10
C.
3
10
5
D.
2
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点.
①求证:AN平面MBD;
②求二面角M-BD-C的余弦值.

查看答案和解析>>

同步练习册答案