精英家教网 > 高中数学 > 题目详情
7.如图,已知平面APD⊥平面ABCD,AB∥CD,CD=AD=AP=4,AB=2,AD⊥AP,CB=2$\sqrt{5}$.
(Ⅰ)求证:CD⊥AP;
(Ⅱ)求三棱锥B-APC的体积.

分析 (1)由面面垂直的性质得出AP⊥平面ABCD,于是AP⊥CD;
(2)取CD中点E,连接BE,由勾股定理得出BE⊥CD,从而得出△ABC的面积,故而VB-APC=VP-ABC=$\frac{1}{3}{S}_{△ABC}•AP$.

解答 证明:(1)∵AD⊥AP,平面APD⊥平面ABCD,平面APD∩平面ABCD=AD,AP?平面APD,
∴AP⊥平面ABCD,
又CD?平面ABCD,
∴CD⊥AP.
(2)取CD中点E,连接BE,
∵AB∥CD,AB=2,DE=$\frac{1}{2}$CD=2,
∴四边形ABED是平行四边形,
∴BE∥AD,BE=AD.
∵AD=4,CE=$\frac{1}{2}CD=2$,BC=2$\sqrt{5}$,
∴BC2=CE2+BE2,∴BE⊥CE.
∴BE⊥AB.
∴S△ABC=$\frac{1}{2}×AB×BE$=$\frac{1}{2}×2×4$=4,
∴VB-APC=VP-ABC=$\frac{1}{3}{S}_{△ABC}•AP$=$\frac{1}{3}×4×4$=$\frac{16}{3}$.

点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足:x>0且x2-xy+2=0,则x+2y的最小值为(  )
A.4$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax3+4x-4(a∈R),曲线y=f(x)在点(1,f(1))处的切线与直线3x-y+2=0平行.
(Ⅰ)求实数a的值;
(Ⅱ)若函数g(x)=f(x)-m有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,直三棱柱ABC-A1B1C1的底面为正三角形,E、F分别是BC、CC1的中点
(1)证明:平面AEF⊥平面B1BCC1
(2)若D为AB中点,∠CA1D=45°且AB=2,设三棱锥F-AEC的体积为V1,三棱锥F-AEC与三棱锥A1-ACD的公共部分的体积为V2,求$\frac{{V}_{1}}{{V}_{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α、β∈(0,π),且tanα、tanβ是方程x2-5x+6=0的两根.
(1)求tan(α+β)的值;
(2)求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(n>0,m>0)的两个焦点为F1,F2,P在双曲线上.且满足∠F1PF1=$\frac{π}{3}$,S${\;}_{△{F}_{1}P{F}_{2}}$=1,则m=$\root{4}{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

命题:“”的否定是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在△ABC中,AB=AC,△ABC的外接圆是⊙O,D是劣弧$\widehat{AC}$上的一点,弦AD,BC的延长线相交于点E,连结BD并延长到点F,连结CD.
(1)求证:DE平分∠CDF;
(2)求证:AB2=AD•AE.

查看答案和解析>>

同步练习册答案