精英家教网 > 高中数学 > 题目详情

【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为低碳族,否则称为非低碳族,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族的人数

占本组的频率

第一组

120

0.6

第二组

195

第三组

100

0.5

第四组

0.4

第五组

30

0.3

第六组

15

0.3

1)补全频率分布直方图并求的值;

2)从岁年龄段的低碳族中采用分层抽样法抽取18人参加户外低碳体验活动,如何抽取?

【答案】1)图像见解析, 2)利用抽签法或随机数表法在年龄段的低碳族中抽取12人,从年龄段的低碳族中抽取6.

【解析】

1)由频率分布直方图中所有频率(面积)和为1可得的频率,从而可补全频率分布直方图,并由频率分布直方图及表格中数据得出

2)根据年龄段的低碳族年龄段的低碳族的人数比为,借助分层抽样的方法即可得出结果.

1)第2组的频率为,所以小矩形的高为,则补全的频率分布直方图如下:

1组人数为,频率为,所以.

又第2组的频率为0.3,故第2组人数为,所以.

4组的频率为,所以第4组人数为,所以.

2)因为年龄段的低碳族年龄段的低碳族的人数比为,所以采用分层随机抽样的方法抽取18人,从年龄段的低碳族中应抽取12人,从年龄段的低碳族中应抽取6.

所以,利用抽签法或随机数表法在年龄段的低碳族中抽取12人,从年龄段的低碳族中抽取6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如下表:

(1)根据表中数据,建立关于的线性回归方程

(2)若近几年该农产品每千克的价格 (单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.

①根据(1)中所建立的回归方程预测该地区年该农产品的产量;

②当为何值时,销售额最大?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的极小值;

2)若上,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于项数为)的有穷正整数数列,记),即中的最大值,称数列为数列的“创新数列”.比如的“创新数列”为.

1)若数列的“创新数列”为1,2,3,4,4,写出所有可能的数列

2)设数列为数列的“创新数列”,满足),求证: );

3)设数列为数列的“创新数列”,数列中的项互不相等且所有项的和等于所有项的积,求出所有的数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形ABCD是直角梯形,平面ABCD

SC与平面ASD所成的角余弦值;

求平面SAB和平面SCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.

甲说:“同时获奖.”

乙说:“不可能同时获奖.”

丙说:“获奖.”

丁说:“至少一件获奖”

如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )

A. 作品与作品B. 作品与作品C. 作品与作品D. 作品与作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的金秋十月,越野e族阿拉善英雄会在内蒙古自治区阿拉善盟阿左旗腾格里沙漠举行,该项目已打造成集沙漠竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年英雄会参会人数(万人)与沙漠中所需环保车辆数量(辆),得到如下统计表:

参会人数(万人)

11

9

8

10

12

所需环保车辆(辆)

28

23

20

25

29

(1)根据统计表所给5组数据,求出关于的线性回归方程

(2)已知租用的环保车平均每辆的费用(元)与数量(辆)的关系为

.主办方根据实际参会人数为所需要投入使用的环保车,

每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次英雄会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少?(注:利润主办方支付费用租用车辆的费用).

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在点处的切线.

)求的解析式.

)求证:

)设,其中.若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,

(Ⅰ)求证:AC⊥A1B;

(Ⅱ)求二面角A﹣A1C﹣B的余弦值.

查看答案和解析>>

同步练习册答案